
Problem 1. Given is a cubical-shaped boulder with an original volume of 216 m3. What size is the surface of the
boulder in m2 after knocking out a cuboidal block of dimensions 1 m× 1 m× 2 m as shown in the picture below?

Result. 216

Solution. Since 63 = 216, the side length of the cube is 6 m. The missing block does not change the surface of the
cube, hence the area of the surface is 6 · 62 = 216 m2.

Problem 2. The two friends Christoph and Jonas hit the jackpot and bought a nice rectangular property of
dimensions 35 m by 25 m. They are planning to build a twin house and share garden G of size 300 m2. The building
floor plan can be seen in the picture:

G
b

(The distance between two neighboring grid lines is 5 m.) How far must wall b intrude from one section of the twin
house into the other one so that the base areas of the friends’ parts are equal?

Result. 8.75 m

Solution. The base area of one house is half of 35 m · 25 m− 300 m2 = 575 m2, that is 287.5 m2. Since one side length
of the rectangular house is 10 m, the other side length must be 28.75 m. Therefore, we get b = 8.75 m.

Problem 3. Little Marcus wants to go to the beach. He owns the following distinguishable beach-outfits: 5 swimming
trunks, 3 straw hats, 4 sunglasses and 5 T-shirts. To comply with the beach rules, he has to wear swimming trunks.
Wearing sunglasses, hats and T-shirts is not obligatory at all, but if he puts on some outfit, he always takes at most
one of each category. How many different ways are there for Marcus to appear in an appropriate outfit?

Result. 600

Solution. Observe that the option of wearing nothing can be viewed as an additional outfit. Considering the hats,
Marcus has to choose between not wearing a hat at all, wearing the first hat, the second one, or the third one, which
gives 4 possibilities in total for the hats. Similarly, there are 5 possibilities to wear the sunglasses and 6 possibilities
of wearing a T-shirt. Since Marcus has to put on one of the 5 swimming trunks, in total he has 5 · 4 · 5 · 6 = 600
possibilities to appear in an appropriate outfit.

Problem 4. Laura spent her vacation in a rain forest. Each day it either rained in the morning, or it rained in
the afternoon, or it rained the whole day. Laura enjoyed altogether 13 days, when it did not rain all the time, but
experienced exactly 11 morning rains and 12 afternoon rains. How long was Laura’s vacation?

Result. 18 days

Solution. Let v be the number of days of Laura’s vacation. Then v − 11 is the number of days when it did not rain in
the morning, and similarly v − 12 is the number of days when it did not rain in the afternoon. Since there was no day
without any rain, we see that

(v − 11) + (v − 12) = 13

or v = 18.

Problem 5. Find the smallest non-negative integer solution of the equation n− 2 ·Q(n) = 2016, where Q(n) is the
sum of the digits of n.

Result. 2034

Solution. The number n−Q(n) is always divisible by 9. Since 2016 is divisible by 9, also Q(n) and consequently n
have to be divisible by 9. Clearly n < 3000, so Q(n) ≤ 2 + 9 + 9 + 9, thus n = 2016 + 2 Q(n) ≤ 2074. Now the only
solution 2034 can easily be found.
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Problem 6. How many positive integers have the property that their first (i.e. leftmost) digit is equal to their number
of digits?

Result. 111 111 111

Solution. If n is a non-zero digit, then there are exactly 10n−1 numbers starting with n and fulfilling the property
from the statement, for these are precisely the integers between n0 . . . 0 and n9 . . . 9. We conclude that there are

1 + 10 + · · ·+ 100 000 000 = 111 111 111

such numbers in total.

Problem 7. A paving consists of many pavers, one of which has the shape of a regular n-gon, completely surrounded
by other pavers. When this paver is rotated by 48◦ about its center, it fits again in its former position. What is the
minimal n for which this is possible?

Result. 15

Solution. A regular n-gon is preserved by a rotation precisely if it is by a multiple of the angle between the segments
connecting two consecutive vertices with the center. This angle is 360◦/n, so we seek the smallest positive n such that

48
360
n

=
2

15
n

is an integer. The result is n = 15.

Problem 8. A day is called happy if its date written in the format DD.MM.YYYY consists of eight distinct
digits—here DD fills in for the day, MM for the month and YYYY for the year, and if the day and the month is less
than 10, a leading zero is prepended. For example, 26.04.1785 was a happy day. When is the next happy day (from
now) going to be?

Result. 17.06.2345

Solution. The month of a happy day either contains a zero or is 12, so either the year does not contain a zero or
exceeds 3000. Let us pursue the former case. Since the leading digit of the day is one of 0, 1, 2, 3, we see that the year
has to be at least 2145. However, this implies that the day is 30, which collides with the month. The second smallest
possible year is 2345. We shall show that there is a happy day in that year. The leading digit of the day has to be 1, so
the first possible month is 06. Finally, setting the day to be 17 is enough to complete the date of the happy day.

Problem 9. How many different planes contain exactly four vertices of a given cuboid?

Result. 12

Solution. There are six planes containing the faces of the cuboid, and further for each pair of opposite faces, there are
two planes perpendicular to these faces and containing a face diagonal. In total there are 12 planes.

Problem 10. Little Sandra wants to draw a beautiful crescent using ruler and compass. First of all, she draws a
circle with center M1 and radius r1 = 3 cm. Then she sets the compass at a point M2 of this circle and draws a second
circle with radius r2 which meets the first circle in antipodal points of a diameter through M1, as shown in the picture
below.

M2M1

r1
r2

A

What is the area of the crescent A in cm2?

Result. 9

Solution. To get the area of A, we have to subtract the area of the circular segment (center M2, radius r2) from the
area of the semicircle (center M1, radius r1). For the area of the segment we calculate the area of the quadrant with
radius r2 and subtract the area of the isosceles right-angled triangle with leg r2. Using the fact that r22 = 2r21 (the
Pythagorean theorem), we infer that the sought area is

πr21
2
−
(
πr22
4
− r21

)
= r21 = 9 cm2.
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Problem 11. All servants of King Octopus have six, seven, or eight legs. The ones having seven legs always lie,
whereas the ones having six or eight legs always tell the truth. One day, King Octopus assembled four of his servants
and asked them how many legs the four of them had altogether. The first servant reported that the total number of
legs was 25, the next one claimed 26, the third one said 27 and the last one 28. How many legs do the the king’s
truth-telling servants (among these four) have in total?

Result. 6

Solution. Only one of the answers may be correct, so there are either three or four liars among the servants. However,
if there were four of them, they would have 28 legs in total, implying that the last servant did not lie–a contradiction.
So, the lying servants have 21 legs altogether. If the sole truth-telling servant had eight legs, the total number would
be 29, which is not among the answers. We deduce that the truth-teller had six legs (and it was the third one to report
the number of legs).

Problem 12. A shop sells bars of milk, white, and dark chocolate for the same price. One day, the shop earned 270
for the sold milk chocolate, 189 for the white chocolate, and 216 for the dark chocolate. What is the smallest total
number of chocolate bars the shop could have sold on that day?

Result. 25

Solution. The price of a single chocolate bar is a common divisor of the amounts in the statement. Should the
number of bars be minimal, the price has to be the greatest possible, i.e. the greatest common divisor. Since
GCD(270, 189, 216) = 27, we infer that the total number of sold bars is

270

27
+

189

27
+

216

27
= 25.

Problem 13. A father of five children wants to have pastries for his family for tea time. Based on painful experience
he knows that he has to distribute either the same type or five different types of pastry to his children, or else all kinds
of heavy dispute will arise among the kids. One day, after a long discussion without any consent on the type of pastries,
he exasperatedly instructed his youngest daughter Anna: “You’ll go to the pastry shop and ask the salesgirl to give
you x pieces of pastries randomly! After you return home, each of the children shall get exactly one piece of pastry and
the remaining pieces will be for mom and dad!” Assuming that the shop sells more than five types of pastry and it
is always well stocked with every type, what number x did the father choose in order to keep the peace among his
children in any case and to keep the costs as low as possible at the same time?

Result. 17

Solution. If Anna ordered 16 or less pieces of pastry to be taken randomly, trouble among the kids could arise: For
example in case of receiving 4 brownies, 4 blueberry muffins, 4 honey scones, and 4 danish, or less pieces of any of
these, there are neither five pieces of the same type nor five pieces different from each other. On the other hand, if
she asks for 17 random pieces, there might be five or more different types of pastry and the children would be happy.
Otherwise there are at most four different types; however, in such a case, if there were less than five pieces of each type,
there would be at most 4 · 4 = 16 pieces in total—a contradiction. We conclude that the father suggested Anna to ask
the salesgirl for 17 randomly chosen pieces of pastry.

Problem 14. What is the ratio of the area of a circle to the area of a square, perimeters of which are equal?

Result. 4 : π

Solution. Let r be the radius of the circle and a be the side length of the square. Since 2πr = 4a, we compute the
ratio of areas as

πr2

a2
=

2r · πr
a · 2a

=
2r · 2a
a · πr

=
4

π
.

Problem 15. In February, Paul decided to visit the Cocos Islands with his private jet. He took off from his mansion
in Europe at 10:00 Central European Time (CET) and landed on the Islands the next day at 5:30 local time (Cocos
Islands Time, CCT). When returning home, he started at 8:30 CCT and landed at 17:00 CET the same day. Assuming
that the duration of the flight was the same in both cases, what was the time on the Cocos Islands when Paul returned
home?

Result. 22:30

Solution. Let d be the duration of the flight and s the difference between the time in Europe and on the Cocos Islands
(in hours). The statement may be rewritten as the system of equations

d+ s = 19.5,

d− s = 8.5

with the solution d = 14, s = 5.5. We deduce that Paul returned home at 22:30 of the Cocos Islands Time.
Note: The Cocos Islands indeed use the time zone GMT+6:30.
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Problem 16. The numbers 14, 20, and n fulfill the following condition: Whenever we multiply any two of them, the
result is divisible by the third one. Find all positive integers n for which this property holds.

Result. 70, 140, 280

Solution. Since n divides 14 · 20 = 23 · 5 · 7, only the primes 2, 5, and 7 may occur in the factorization of n, with 5
and 7 occurring at most once and 2 at most three times. Further, from 14 | 20n wee see that n is a multiple of 7, and
similarly, 20 | 14n implies 10 | n, so 70 | n. It remains to conclude that all of the possible numbers 70, 140, 280 fulfill
the conditions from the statement.

Problem 17. A rectangle is divided into two trapezoids along the line segment x as in the picture below. The
distance PA is 10 cm and AQ is 8 cm. The area of the trapezoid T1 is 90 cm2 and the area of T2 is 180 cm2.

P A Q

x
T1

T2

What is the length of the segment x in cm?

Result. 17

Solution. Denote by R, S the other two vertices of the rectangle, B the other endpoint of x, and M the point on SR
such that SM = PA = 10.

P A Q

x
T1

T2

RS B M

As PQ = 18 and the area of rectangle PQRS is 180 + 90 = 270, it follows that PS = QR = 270/18 = 15. The formula
for the area of trapezoid T2 states that

180 =
1

2
(BR+AQ) ·QR

or BR = 16. Now BM = BR−MR = 8 and using the Pythagorean theorem,

x =
√
AM2 +BM2 =

√
289 = 17.

Problem 18. Elisabeth has harvested strawberries in her garden. She wants to distribute them to her four sons
in such a way that each son gets at least three strawberries and Valentin receives more strawberries than Benedikt,
Benedikt more than Ferdinand, and Ferdinand more than Michael. Each son knows his number of strawberries, the
total number of strawberries distributed, and the above-mentioned conditions. How should Elisabeth distribute the
strawberries in order to hand as few as possible of them and none of her sons is able to determine the whole distribution?

Result. (M, F, B, V ) = (3, 5, 6, 8)

Solution. Let us denote by V the number of Valentin’s strawberries; obviously, V ≥ 6. By analysing cases, we will
show that Elisabeth cannot distribute less than 22 strawberries. If V = 6, there is only one possible distribution,
namely (3, 4, 5, 6). In the case V = 7, each of the possible distributions (3, 4, 5, 7), (3, 4, 6, 7), (3, 5, 6, 7), and (4, 5, 6, 7)
uses a different number of strawberries, therefore Valentin, knowing the total number, can determine the distribution.
Similarly, for V = 8 or V = 9, only the distributions (3, 4, 5, 8), (3, 4, 6, 8), and (3, 4, 5, 9) exist (with less than 22
strawberries), each one being computable by Valentin.

On the other hand, the distribution (3, 5, 6, 8) satisfies all the conditions: Valentin and Michael cannot distinguish
it from (3, 4, 7, 8), whereas Ferdinand and Benedikt can think that the distribution is (4, 5, 6, 7). It remains to show
that no other distribution of 22 strawberries complies with the requirements: From (3, 4, 5, 10), (3, 4, 6, 9), (3, 4, 7, 8),
and (4, 5, 6, 7), the third one can be deduced by Benedikt and the remaining three by Valentin.

4



Problem 19. We write all the integers from 1 to 1000 consecutively clockwise along the circumference of a circle.
We now mark some of the numbers: Starting with 1, go clockwise and mark every 15th number (i.e. 16, 31 etc.). We
continue this way, until we are forced to mark a number which we have already marked. How many numbers stay
unmarked at the end of the procedure?

Result. 800

Solution. In the first pass, all the numbers of the form 15k + 1 (for some integer k) are marked, starting with 1 and
ending with 991; the following pass starts with 6 and ends with 996, marking all the numbers of the form 15k + 6.
Finally, in the third pass one begins with the number 11 and ends with 986 (the marked numbers having the form
15k + 11), which is the last number to be marked. Observe that we have marked exactly all the numbers of the form
5k + 1, which comprise precisely one fifth of all the numbers on the circle. We conclude that 4/5 · 1000 = 800 numbers
remain unmarked.

Problem 20. Find the sum of the seven marked interior angles of this 7-pointed star (in degrees)!

Result. 540◦

Solution. Denote the tips of the star by A,B, . . . , G as in the picture; further, let X, Y be the intersection of DE
with AB, AG, respectively.

A

B

C

D

E

F

G

Y

X

Let S be the sum in question. Since the sum of the internal angles in both quadrilaterals XBCD and Y EFG is 360◦,
we see that

S + ∠BXY + ∠XYG− ∠XAY = 2 · 360◦.

However, ∠BXY = 180◦ − ∠AXY and ∠XYG = 180◦ − ∠XY A, so

∠BXY + ∠XYG− ∠XAY = 360◦ − (∠AXY + ∠XY A+ ∠XAY ) = 180◦.

It follows that S = 540◦.

Problem 21. Pupils were given the following exercise: They should compute the arithmetic mean of the numbers 1,
3, 6, 7, 8, and 10. However, Lucy chose a wrong approach: First she picked two of the numbers and computed their
arithmetic mean. Then she computed the arithmetic mean of the result and some other number and repeated this step
until she had used all the numbers. What is the largest absolute value of the error (i.e. the difference with the correct
result) Lucy could have achieved?

Result. 17/6

Solution. One can easily see that Lucy’s procedure is in fact the following: She picks some ordering of the given
numbers, say (a1, a2, a3, a4, a5, a6), and computes

S =
a1
25

+
a2
25

+
a3
24

+
a4
23

+
a5
22

+
a6
21
.

Among all these orderings, the highest value of S is achieved for the ascending ordering, since the largest number is
divided by the smallest, the second largest by the second smallest etc. Similarly, the smallest value of S is achieved for
the descending ordering. Obviously, the largest error will occur for one of these extremal orderings. The arithmetic
mean of the given numbers is 35/6. If the ordering is chosen ascending, we get S = 67/8, yielding the error 61/24. If
the ordering is descending, we obtain S = 3 with the error 17/6, which is the greater of the two and thus the sought
result.
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Problem 22. Along one side of a straight road there are five street lights L1, L2, L3, L4, and L5 lined up equally
spaced 12 m apart. On the other side of the road there is an ice cream shop. If Julien is standing at the entrance E of
the shop, the angle subtended at this point by L1 and L2 is α = 27◦. If he is standing at L5, the angle at that point
subtended by L1 and E is 27◦, too.

α

α

E

L5 L4 L3 L2 L1

What is the distance from L1 to E?

Result. 24 m

Solution. The triangles EL1L2 and EL1L5 are similar, since α and ∠L5L1E occur as interior angles in both of them.
Therefore, we get

EL1

L2L1
=
L5L1

EL1
or EL2

1 = L2L1 · L5L1 = 12 · 48 = 576,

yielding the desired distance EL1 = 24 m.

Problem 23. Clara chose two distinct integers from 1 to 17, inclusive, and multiplied them. Surprisingly, the product
turned out to be equal to the sum of the remaining fifteen numbers. Find Clara’s two numbers.

Result. 10 and 13

Solution. Denote by a and b the numbers fulfilling the given condition. As the sum of the first 17 numbers is 153,
we have to solve the equation 153− (a+ b) = ab. Rearranging and adding 1 on both sides of the equation leads to
154 = ab+ a+ b+ 1 = (a+ 1)(b+ 1). Since 154 = 2 · 7 · 11 and 2 ≤ (a+ 1), (b+ 1) ≤ 18, the only possible factorization
is 154 = 11 · 14. Therefore, the sought-after numbers are 10 and 13.

Problem 24. How many 6-tuples (a, b, c, d, e, f) of positive integers satisfy a > b > c > d > e > f and a + f =
b+ e = c+ d = 30 simultaneously?

Result.
(
14
3

)
= 364

Solution. Let us express the 6-tuple as

(a, b, c, d, e, f) = (15 + x, 15 + y, 15 + z, 15− z, 15− y, 15− x),

where 0 ≤ x, y, z < 15. The condition a > b > c > d > e > f is equivalent to x > y > z > 0, so the 6-tuple is uniquely
determined by a choice of three positive integers less than 15. It follows that there are

(
14
3

)
= 364 such 6-tuples.

Problem 25. A timed bomb is equipped with a display showing the time before the explosion in minutes and seconds.
It starts counting down with the value 50:00 on the display. A light bulb blinks whenever the displayed number of
remaining minutes is equal to the displayed number of remaining seconds (e.g. 15:15) or when the four digits on the
display read the same when reversed (e.g. 15:51). We can disable the bomb when the light blinks for the 70th time.
What will be the time on the display then?

Result. 03:03

Solution. The number of minutes is equal to the number of seconds once in each minute, so in 50 minutes this
happens 50 times. The event when the number on the display reads the same occurs once in each minute with the
units digit not exceeding 5, so this happens 30 times. There are five cases when both these events happen at once:
00:00, 11:11, . . . , 44:44. Therefore the light bulb blinks 50 + 30− 5 = 75 times (including at 00:00) before the bomb
explodes; we can disable the bomb when there are only five blinks remaining (00:00, 01:01, 01:10, 02:02, 02:20), i.e.
when there is 03:03 shown on the display.

Problem 26. Five circles are tangent to each other as indicated in the figure. Find the radius of the smallest circle,
if the radius of the big circle is 2 and the two other circles with marked centers are of radius 1.
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Result. 1
3

Solution. Denote by M1, M2, and M3 the centers of the circles as in the figure and by r3 the radius of the second
smallest circle.

M1M2

M3

C

B

A

P

Due to the symmetry of the whole figure, M1M2 ⊥M1M3 and the Pythagorean theorem helps to find r3 = 2
3 from the

equation
M1M

2
2 +M1M

2
3 = M2M

2
3 or 1 + (2− r3)2 = (1 + r3)2.

Let P be a point that completes the centers M1, M2, and M3 to a rectangle. Let A, B, and C be the intersection points
of rays M1P , M2P , and M3P with the respective circles. Since M2M1M3P is a rectangle, we get PB = 4

3 − 1 = 1
3 ,

PC = 1− 2
3 = 1

3 and PA = 2−M2M3 = 2− (1 + r3) = 1
3 . Therefore, P has distance 1

3 to all three points A, B, and
C. Due to this fact, these points lie on the circle with center P and radius 1

3 . Since M1P , M2P , and M3P are straight
lines, the points A, B, and C are the tangent points of the corresponding circles and the circle with center P and
radius 1

3 is the small circle in the picture of the posed problem.

Problem 27. In a casino, some people sat around a large table playing roulette. When Erich left that table carrying
his assets of 16 000 euros away, the average balance of all players decreased by 1 000 euros. It diminished again by 1 000
euros, when the two gamblers Bettina and Elfi got into business at that table joining in with 2 000 euros each. How
many players sat around the table while Erich was still gambling?

Result. 9

Solution. By n denote the number of people at the beginning, when Erich still was playing, and by x denote the
average balance of one gambler at that table. From the given statements we obtain the following two equations:

nx− 16 000

n− 1
= x− 1 000 and

nx− 16 000 + 2 · 2 000

n+ 1
= x− 2 · 1 000.

Working out these equations yields

x = 17 000− 1 000n and 2 000n− 10 000 = x,

and now we easily obtain n = 9. So, while Erich was gambling, there were nine people sitting at the table.

Problem 28. In a cube 7× 7× 7, each two neighboring unit cubes are separated by a partition. We want to remove
some of the partitions so that each unit cube will become connected with at least one of the outer unit cubes. What is
the minimum number of partitions to be removed?

Result. 125

Solution. At the beginning, there are 73 unit cubes. By removing one partition we connect two unit cubes and the
number of isolated spaces within the cube decreases by one. At the end, we want to have at most 73 − 53 isolated
spaces (that is the number of outer unit cubes). It follows that we need to remove at least 53 = 125 partitions. It is
easy to see that 125 is enough.

Problem 29. It is known that 20∗∗∗16 is a 7-digit square of an integer. What are the three missing digits?

Result. 909

Solution. Let a2 be a perfect square ending with . . . 16. This means that a2 − 16 = (a − 4)(a + 4) is divisible
by 100, so a = 2b and (b − 2)(b + 2) is divisible by 25. Thus, b = 25n ± 2 and consequently a = 50n ± 4. As
14042 < (1.414 · 1000)2 < (1000

√
2)2 = 2000000 and 14542 > 14502 = 2102500 > 2100000, the only possibility is

a = 1446, yielding a2 = 2090916.
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Problem 30. Triangle ABC with AB = AC = 5 m and BC = 6 m is partially filled with water. When the triangle
lies on the side BC, the surface of the water is 3 m above the side. What is the height in meters of the area filled with
water when the triangle lies on the side AB?

A

B C

3

A B

C

?

Result. 18/5

Solution. Let D be the midpoint of BC; then 4ABD is a right-angled triangle, so from the Pythagorean theorem,
AD = 4. The part of the triangle not filled with water is therefore a triangle similar to 4ABC with ratio of similitude
1/4. Since the ratio of the areas (of the non-filled part and the whole triangle) stays the same after rotating the triangle,
an analogous similarity has to occur in the new situation, too. Therefore the surface of the water is always in 3/4 of
the height, so it suffices to compute the height from AB. Knowing that the area of 4ABC is 1

2 ·AD ·BC = 12, we
have hAB = 2 · 12/AB = 24/5. We conclude that the area filled with water is of height 3/4 · 24/5 = 18/5.

Problem 31. There are six boxes numbered 1 to 6 and 17 peaches somehow distributed in them. The only move we
are allowed to do is the following: If there are exactly n peaches in the n-th box, we eat one of them and add the
remaining n− 1 peaches to the boxes 1 to n− 1, one to each box. What is the distribution of the peaches provided
that we can eat all the peaches?

Result. 1, 1, 3, 2, 4, 6

Solution. Let us trace backwards the possible moves: The final state (0, 0, 0, 0, 0, 0), i.e. when all the peaches are
eaten, can be reached only from (1, 0, 0, 0, 0, 0), which in turn could have emerged only from (0, 2, 0, 0, 0, 0) etc.—this
way we construct a unique chain of distributions of peaches

. . . (0, 2, 0, 0, 0, 0), (1, 2, 0, 0, 0, 0), (0, 1, 3, 0, 0, 0), (1, 1, 3, 0, 0, 0), . . .

ending with (1, 1, 3, 2, 4, 6), which is the sought-after distribution of seventeen peaches.

Problem 32. A simple aerial lift with fixed two-person chairs operates on a mountain. 74 people are planning to
travel upwards, whereas 26 passengers are waiting at the upper station. Exactly at noon, the lift starts working and a
pair of people gets on the lift on both its stations; the rest of the passengers is then loaded continuously. At 12:16,
the leading chair going upwards meets the last occupied chair going downwards, and at 12:22, the leading chair going
downwards meets the last occupied chair going upwards. The distance between each two chairs on the rope is the same,
the lift maintains constant speed, and all the passengers travel in pairs. How long does it take from the lower station
to the upper (in minutes)?

Result. 26

Solution. Firstly, the distance between the first and the last up-going chair is thrice the distance of the first and the
last down-going chair. Thus, we see that the time between the two moments described in the statement is twice the
time from the moment the leading chairs meet till the moment the leading up-going chair meets the last down-going
one. We infer that the leading chairs met at 12:13 (exactly in the middle of the lift), hence the time needed to go
through the whole lift is 26 minutes.

Problem 33. Let ABCD be a rhombus and M , N points on the segments AB, BC different from A, B, C such
that DMN is an equilateral triangle and AD = MD. Find ∠ABC (in degrees).

Result. 100◦

Solution. Since CD = AD = MD = ND, the triangles AMD and NCD are isosceles with bases AM , NC, respectively.
Put θ = ∠DAB; then ∠ABC = ∠ADC = 180◦ − θ. On the other hand, since

∠DAM = ∠AMD = ∠DNC = ∠NCD = θ,

we have
∠ADM = ∠NDC = 180◦ − 2θ

and
∠ADC = ∠ADM + ∠MDN + ∠NDC = 420◦ − 4θ.
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We conclude that
420◦ − 4θ = 180◦ − θ

or θ = 80◦, therefore ∠ABC = 100◦.

C

D A

B

M

N

Problem 34. In how many ways is it possible to color the cells of a 2× 7 table with green and yellow in such a way
that neither green nor yellow L-trimino appears in the table?

Note: L-trimino is the following (possibly rotated) shape:

Result. 130

Solution. If any column of the table is monochromatic, then the neighboring column(s) must have the other color, so
the next column(s) must have the same color as the first one etc., so there are two possibilities to color the table this
way, according to which color is used in the first column.

On the other hand, the previous paragraph implies that if there is a column colored with both colors, all the other
columns have to use both colors as well. It is easy to see that no matter how we distribute the colors between the
upper and lower cells in this case, the resulting coloring will always satisfy the condition from the statement, so there
are 27 = 128 such colorings.

In total there are 2 + 128 = 130 colorings of the table.

Problem 35. Michael is a keen diamond collector, but so far he owns less than 200 diamonds. He divided all his
diamonds into several (at least two) piles in such a way that

• each two piles consist of different number of diamonds,

• none of these piles consists of exactly two diamonds,

• for each of these piles it holds that whenever it is divided into two smaller piles, at least one of these new piles
has the same size as some previously existing one.

What is the greatest number of diamonds Michael can possess?

Note: A pile consists of a non-zero number of diamonds.

Result. 196

Solution. Assume that we have a division in accordance with the problem statement. Let m be the number of
diamonds in the smallest pile. If m ≥ 2, then the smallest pile can be divided into two piles of sizes 1 and m − 1
respectively, neither of which has the same size as some other pile; hence m = 1.

Next, we show that the second smallest pile consists of 3 diamonds. Since 2 is excluded, we have to rule out the
case when it consists of n ≥ 4 diamonds. However, this is clearly not possible because of the division n = 2 + (n− 2).

Finally, we prove that if the piles 1, 3, . . . , 2k− 1 (k > 1) are the k smallest piles in the division, then the (k + 1)-th
smallest pile (if it exists) consists of 2k+ 1 diamonds. Let p be the size of the (k+ 1)-th smallest pile. Clearly, p is odd,
for a pile of even size could be divided into two smaller ones of even size. If p ≥ 2k + 3, the division p = 2 + (p− 2)
yields a contradiction. We conclude that the only possibility is p = 2k+ 1, which is readily seen to satisfy the conditions
from the statement.

It follows by induction that the number of Michael’s diamonds is of the form 1 + 3 + · · ·+ (2k− 1) = k2. The largest
square number less than 200 is 142 = 196, which is the largest possible number of diamonds in Michael’s possession.
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Problem 36. Recall that in the game of rock-paper-scissors we have three shapes: R – rock, P – paper and S –
scissors such that S > P , P > R, R > S and R = R, P = P , S = S, where A > B means ’A beats B’ and A = B
means ’when A is played against B, the game ends in a tie’. A tournament in Two Handed Rock-Paper-Scissors
Without Repetition between players P1 and P2 consists of 9 games. In every game each player chooses a pair (`i, ri)
where `i and ri stand for shapes played by the left and right hand, respectively, of the player Pi. During the whole
tournament each player must choose every possible pair exactly once. In a single game we distribute 4 points in the
following way: the winner on each pair of playing hands (left/right) receives 2 points and the loser receives 0 points or
both player receive 1 point if there is a tie in a pair of hands. Suppose that players are choosing their moves at random.
What is the probability that each of the 9 games in the tournament ends in a tie (i.e. with score 2:2)?

Result. 3!3/9! = 1/1680

Solution. Let us define three sets of three pairs each:

DR = {(R,R), (P, S), (S, P )}, DP = {(P, P ), (S,R), (R,S)}, DS = {(S, S), (R,P ), (P,R)}.

Note that a single game in the tournament ends in a tie if and only if two pairs from the same set out of DR, DP , DS

are played against each other.
Possible outcomes of the whole tournament are all pairs of permutations of the set DR∪DP ∪DS . All the games end

in a tie if and only if elements of each set DR, DP , DS occupy the same three positions in P1’s and P2’s permutation.
Consider any permutation and let it denote the order of moves of the player P1 in subsequent games. Number of
arrangements of P2’s moves yielding a draw in each game equals 3!3, no matter what the P1’s permutation was.
Therefore the desired probability is

3!3

9!
=

1

1680
.

Problem 37. The net of a solid consists of eight regular triangles and six squares, as shown in the picture:

Assuming that the length of each edge is 1 km, what is the volume of the solid (in km3)?

Result. 5
3

√
2

Solution. The described solid can be obtained from a cube in the following way: Each corner of the cube is cut
off, the cut going through the centers of the edges adjacent to the removed vertex. The edge length of the cube is√

2, so its volume is 2
√

2. The removed corners are eight (oblique) pyramids, the base of each being an isosceles
right-angled triangle with the leg of length

√
2/2, and the height being

√
2/2, too. Therefore the volume of one corner

is 1
3 ·

1
2 · (
√

2/2)2 · (
√

2/2) =
√

2/24 and the volume of the given solid is 2
√

2− 8 ·
√

2/24 = 5
√

2/3.

Problem 38. Find the only three-digit prime factor of 999 999 995 904.

Result. 601

Solution. Observe that
999 999 995 904 = 1012 − 212 = 212(512 − 1)

and
512 − 1 = (5− 1)(5 + 1)(52 + 1)(52 − 5 + 1)(52 + 5 + 1)(54 − 52 + 1),

but only the last factor is greater than 100. Since we know that a three-digit prime factor exists and 54 − 52 + 1 = 601
is clearly divisible by neither of 2, 3, 5, it is a prime, and hence the sought number.

Problem 39. Thirteen bees: one little bee and twelve large bees are living on a 37-cell honeycomb. Each large bee
occupies 3 pairwise adjacent cells and the little bee occupies exactly 1 cell (see the picture). In how many ways can the
honeycomb be divided into 13 non-overlapping sectors so that all thirteen bees can be accommodated in accordance
with the given restrictions?
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Result. 20

Solution. Let us consider 13 cells shaded in the picture below:

Each three-cell sector contains exactly one shaded cell, so the cell of the little bee must be one of the shaded.
If it is the central cell, then there are exactly two ways to divide the rest of the honeycomb into 12 large bee sectors

(the one shown in the picture and the one rotated by 60 degrees). For each of the 6 ‘middle’ shaded cells there is
exactly one way to accommodate large bees in the rest of the honeycomb. Finally, for each of the boundary shaded cells
there are exactly two ways to divide the remaining cells into three-cells sectors (the one shown and the symmetric one).

This gives a total of 2 + 6 · 1 + 6 · 2 = 20 ways to dissect the honeycomb into the sectors as requested.

Problem 40. Equilateral triangle ABC is inscribed in circle ω. Point X is on the (shorter) arc BC of ω and T is
the intersection of AB and CX. If AX = 5 and TX = 3, find BX.

Result. 15/8

Solution. Since ∠AXB = ∠ACB = 60◦ and ∠AXC = ∠ABC = 60◦, ∠BXT = 180◦ − ∠AXB − ∠AXC = 60◦. Let
U be a point on AX such that TU ‖ BX.

X

AB

C

T

U

ω

Then TUX is an equilateral triangle and 4TUA ∼ 4BXA. Therefore we have

BX =
TU

AU
·AX =

TX ·AX
TX +AX

=
15

8
.

Problem 41. Let ABC be an equilateral triangle. An interior point P of ABC is said to be shining if we can find
exactly 27 rays emanating from P intersecting the sides of the triangle ABC such that the triangle is divided by these
rays into 27 smaller triangles of equal area. Determine the number of shining points in ABC.

Result.
(
26
2

)
= 325

Solution. We see that PA, PB, PC are among the 27 rays from P : If not, we would obtain a quadrilateral, leading
to a contradiction. Let us divide the perimeter of 4ABC into 27 segments such that each side is divided into segments
of equal length; there are altogether

(
26
2

)
= 325 such divisions, since if we fix A to be the first dividing point, we can

freely choose B and C from the remaining 26 points. Finally, observe that each such division corresponds to exactly

11



one shining point and vice versa: Clearly, (the rays from) each shining point gives rise to a division. On the other hand,
given the numbers a, b, c of the segments the respective sides are divided into, we let P be the unique point inside
4ABC such that the distances of P to the sides BC, CA, AB are in the ratio a : b : c. A straightforward computation
shows that P is indeed the shining point, the rays from which divide 4ABC in accordance with the given division.

Problem 42. How many positive divisors of 20162 less than 2016 are not divisors of 2016?

Result. 47

Solution. From the prime factorization 2016 = 25 · 32 · 7 we obtain 20162 = 210 · 34 · 72. Therefore, 20162 has
11 · 5 · 3 = 165 positive divisors of which 1

2 · (165− 1) = 82 are less than 2016—excluding 2016, the divisors may be
divided into pairs (x, y) such that x · y = 20162 and x < 2016 < y. Note that 2016 has 6 · 3 · 2− 1 = 35 divisors less
than 2016 which naturally are divisors of 20162, too. Hence, the desired number of divisors is 82− 35 = 47.

Problem 43. Let

Zn =
4n+

√
4n2 − 1√

2n− 1 +
√

2n+ 1
.

Compute Z1 + Z2 + · · ·+ Z2016.

Result. 1
2 (4033

√
4033− 1)

Solution. Observe that for n ∈ N,

4n+
√

4n2 − 1√
2n− 1 +

√
2n+ 1

=
(
√

2n+ 1−
√

2n− 1)((
√

2n+ 1)2 + (
√

2n+ 1)(
√

2n− 1) + (
√

2n− 1)2)

(
√

2n+ 1−
√

2n− 1)(
√

2n+ 1 +
√

2n− 1)

=
1

2
((
√

2n+ 1)3 − (
√

2n− 1)3).

Therefore,

Z1 + · · ·+ Z2016 =
1

2

(
(
√

3)3 − (
√

1)3 + (
√

5)3 − (
√

3)3 + · · ·+ (
√

4033)3 − (
√

4031)3
)

=
1

2
(4033

√
4033− 1).

Problem 44. We construct a sequence of integers a0, a1, a2 . . . in the following way: If ai is divisible by three, let
ai+1 = ai/3; otherwise let ai+1 = ai + 1. For how many different positive integers a0 does the sequence reach the value
1 for the first time in exactly eleven steps (i.e. a11 = 1, but a0, a1, . . . , a10 6= 1)?

Result. 423

Solution. The number 1 can be reached only from 3, which in turn can be obtained from 2 or 9. Further, 9 can arise
from 8 or 27; 2 can be reached from 1 or 6, but only 6 is admissible in the light of the problem statement. Let us
construct further predecessors: Let Pn be the set of positive integers such that the sequence from the statement reaches
1 in exactly n steps if and only if a0 ∈ Pn. Clearly, to establish Pn+1 for n ≥ 3, we take 3x for each x ∈ Pn and also
x− 1 for each x ∈ Pn such that x− 1 is not a multiple of three.

Let pn be the number of elements of Pn, and denote further by fn, gn, hn the number of elements of Pn of the form
3k, 3k + 1, 3k + 2, respectively. Observe that for n ≥ 3, all the elements of Pn are greater than 3, and so

• fn+1 = pn, since for each x ∈ Pn there is 3x ∈ Pn+1,

• gn+1 = hn, since for each x ∈ Pn of the form 3k + 2 there is x− 1 = 3k + 1 ∈ Pn+1, and

• hn+1 = fn for similar reasons.

Therefore we have
pn = fn + gn + hn = pn−1 + pn−2 + pn−3

for n ≥ 4. The initial calculations show that p1 = 1, p2 = 2, and p3 = 3, and the subsequent terms can be calculated in
a straightforward manner using the recurrence above. The sought result is p11 = 423.
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Problem 45. Let ABCD, AEFG, and EDHI be rectangles with centers K, L, J , respectively. Assume further
that A, D, E are inner points of line segments HI, FG, BC, respectively, and ∠AED = 53◦. Determine the size of
∠JKL (in degrees).

Result. 74◦

Solution. Since KJ is a median in triangle BID, we have KJ ‖ BI, and similarly, KL ‖ CF . Thus ∠JKL =
∠IBA+ ∠DCF . Since ∠AIE = ∠ABE = 90◦, the quadrilateral BIAE is cyclic. Consequently,

∠IBA = ∠IEA = 90◦ − ∠AED = 37◦.

In the same way we deduce ∠DCF = 37◦, therefore ∠JKL = 74◦.

A

BC

D

E

H

I

F

G

K

L
J

Problem 46. James has picked several (not necessarily distinct) integers from the set {−1, 0, 1, 2} in such a way
that their sum equals 19 and the sum of their squares is 99. What is the greatest possible value of the sum of the
cubes of James’ numbers?

Result. 133

Solution. Assume that there are exactly a, b, c numbers equal to −1, 1, 2, respectively, among the James’ numbers
(those equal to 0 clearly play no role). The conditions from the statement may then be rewritten as

−a+ b+ 2c = 19,

a+ b+ 4c = 99.

Our goal is to maximize −a+ b+ 8c = 19 + 6c. However, by adding the equalities, we find out that 6c = 118− 2b, so
c ≤ 19. The value c = 19 can be obtained with the choice a = 21, b = 2, so the sought maximum is 19 + 6 · 19 = 133.

Problem 47. Find the largest 9-digit number with the following properties:

• all of its digits are different;

• for each k = 1, 2, . . . , 9, when the k-th digit is crossed out the resulting 8-digit number is divisible by k.

Result. 876 513 240

Solution. Denote by Ak the k-th digit of the sought number, so the number is A1A2A3A4A5A6A7A8A9. There are 10
possible digits, so exactly one, say d, is not used in the decimal representation of the desired number. Let Nk be the
number with k-th digit crossed out.

We know that N2 is even, so 2 | A9. Furthermore, the number N5 is divisible by 5, hence so is A9. This means that
A9 = 0.

The number N9 is divisible by 9, so the digit sum of this number, namely 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9−d = 45−d,
is divisible by 9, which leads to d = 9.

Numbers N8 and N4 are both divisible by 4 which means that both digits A7, A8 are even. In addition, the first of
these numbers is divisible by 8, so the 2-digit number A6A7 is divisible by 4. Also numbers N3 and N6 are divisible by
3 and so is the digit sum of the desired number. From this we get {A3, A6} = {3, 6}.

As we are looking for the largest possible number, suppose that A1 = 8, A3 = 6, A6 = 3. We then have
{A7, A8} = {2, 4} but since 4 | A6A7, A7 = 2 and A8 = 4.

It suffices to check that putting the remaining digits in a decreasing order in the gaps leads to the number 876513240
which satisfies the remaining condition, i.e. the number N7 = 87651340 is divisible by 7.
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Problem 48. Point P lies inside a rectangle ABCD with AB = 12. Each of triangles ABP , BCP , DAP has its
perimeter equal to its area. What is the perimeter of triangle CDP?

A B

CD

P

12

Result. 25

Solution. Note that a triangle has equal area and perimeter if and only if the incircle has radius 2. Thus triangles
BCP and ADP are congruent; indeed, if P is closer to AD than BC, then the inradius of ADP is smaller than the
inradius of BCP . This means that P lies on one of the axes of symmetry of ABCD.

A B

CD

P

M

Q

6

x

y

Let Q be the perpendicular projection of P onto BC, M the midpoint of segment AB and put x = BQ, y = CQ. The
area of triangle ABP is thus 6x, and using the Pythagorean theorem in triangle MBP , we find BP =

√
x2 + 62. The

equality of area and perimeter of 4ABP thus translates into the equation

6x = 12 + 2
√
x2 + 62

with the only solution x = 9/2.

The value of y can be found similarly: We have BP = 15/2 and CP =
√
y2 + 62, so the condition on triangle BCP

implies
1

2
· 6 ·

(
y +

9

2

)
= y +

9

2
+

15

2
+
√
y2 + 62

with the only positive solution y = 5/2.
We conclude that CP = 13/2 and the perimeter of triangle CDP equals 25.

Problem 49. The pair of integers (0, 0) is written on a blackboard. In each step, we replace it in this way: If there is
a pair (a, b), we replace it with (a+ b+ c, b+ c), where either c = 247 or c = −118 (we may choose the number c in each
step). Find the smallest (non-zero) number of steps after which the pair (0, b) for some b appears on the blackboard.

Result. 145

Solution. Denote ci the number c used in the i-th step. After n steps, the number a (i.e. the first coordinate of the
pair) will be a = nc1 + (n − 1)c2 + · · ·+ cn. Fix n and let s = nε1 + (n − 1)ε2 + · · ·+ εn, where εi = 1 if ci = 247,
and εi = 0 otherwise. Define t in a similar fashion with εi = 1 if and only if ci = −118. Clearly a = 247s− 118t, so
the condition a = 0 implies 247s = 118t, but as the numbers 247 and 118 are coprime, there is an integer k such that
s = 118k and t = 247k. It follows that

365k = s+ t = 1 + 2 + · · ·+ n =
n(n+ 1)

2
,

and since 365 = 5 · 73, we see that n is at least 2 · 73− 1 = 145.
It remains to show that there are numbers ci such that 247s = 118t with n = 145. Indeed, let m be the smallest

positive integer such that

1 + 2 + · · ·+m ≥ 247

365
· (1 + 2 + · · ·+ n);
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now put ci = −118 for i ∈ {1, . . . ,m} \ {r} and ci = 247 otherwise, where

r = 1 + 2 + · · ·+m− 247

365
· (1 + 2 + · · ·+ n).

(In fact, m = 120 and r = 97.) This way we get precisely

247s = 118t =
118 · 247

365
· (1 + 2 + · · ·+ n)

as desired.

Problem 50. A zigzag consists of two parallel rays of opposite directions with the initial points joined with a segment.
What is the maximum number of regions the plane can be divided into using ten zigzags?

Result. 416

Solution. Every two zigzags can intersect in at most nine points, and for any number of zigzags, we may easily achieve
the configuration when every two intersect in exactly nine points (and each point is the intersection of at most two
lines). Consider placing the zigzags one by one: The n-th added zigzag is divided by the 9(n− 1) intersection points
with the n− 1 already placed zigzags into 9(n− 1) + 1 segments, each dividing an existing region into two. It follows
the maximum number of regions definable using n zigzags, Zn, satisfies Z1 = 2 and Zn = Zn−1 + 9n − 8 for n ≥ 2.
The general result Zn = 9

2n
2 − 7

2n+ 1 then follows easily by induction and in particular, Z10 = 416.

Problem 51. Each face of a tetrahedron is a triangle with sides 1,
√

2, and c and the circumradius of the tetrahedron
is 5/6. Find c.

Result.
√

23/3

Solution. We will prove a more general result: If each side of a tetrahedron is a triangle with sides a, b, c and the
circumradius of the tetrahedron is %, then a2 + b2 + c2 = 8%2. The result in our particular situation then follows directly
by plugging in.

Inscribe the tetrahedron in a cuboid with edges of lengths p, q, r so that the edges of the tetrahedron are the face
diagonals of the cuboid. By the Pythagorean theorem,

p2 + q2 = a2, p2 + r2 = b2, and q2 + r2 = c2.

Furthermore, the circumsphere of the tetrahedron coincides with the one of the cuboid, the diameter of which is the
space diagonal. Therefore

(2%)2 = p2 + q2 + r2 =
1

2
(a2 + b2 + c2),

which after rearranging gives the claimed equality.

Problem 52. For a big welcome party butler James has lined up 2016 cocktail glasses in a row, each containing
delicious cherry cocktail. To finish things up, his task is to cover one of the glasses with a silver lid, to put a statue on
top of the lid and to distribute an odd number of cherries into the uncovered glasses, at most one cherry per glass.
How many possible arrangements of cherries and the lid are there if there have to be more cherries on the right-hand
side of the lid than on its left-hand side?

Result. 2016 · 22013

Solution. First, consider all possible arrangements of the lid and at most one cherry in each uncovered glass without
posing any further condition. There are 2016 possible locations for the lid and 22015 possibilities to put at most one
cherry in each of the remaining 2015 glasses, which gives a total of 2016 · 22015 arrangements. The binomial formula
expansion

0 = (−1 + 1)2016 =

2016∑
i=0

(
2016

i

)
(−1)i =

1008∑
i=0

(
2016

2i

)
−

1008∑
i=1

(
2016

2i− 1

)
shows that the number of all arrangements having an even number of cherries is equal to the number of all arrangements
having an odd number of cherries. Hence, the set M of all arrangements of the lid and an odd number of cherries
contains 1

2 · 2016 · 22015 = 2016 · 22014 elements. Now observe that every element (n1, n2) of M representing the
arrangement with n1 cherries on the left-hand side of the lid and n2 cherries on its right-hand side has got exactly
one corresponding element (n2, n1) in M . These arrangements are different from each other, because the sum n1 + n2
being an odd number implies that one of the numbers n1 or n2 is even, the other one is odd, and one number is bigger
than the other. Hence, exactly one of the two corresponding arrangements complies with the stated condition that
there should be more cherries on the right-hand side of the lid than on its left-hand side. Therefore, the answer is
1
2 · 2016 · 22014 = 2016 · 22013.
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Problem 53. We are given a wooden cube with its surface painted green. There are 33 different planes, each located
between some two opposite faces of the cube and parallel to them, which dissect the cube into small cuboidal blocks.
Given that the number of blocks with at least one green face equals the number of blocks with no green faces, determine
the total number of blocks into which the cube is dissected.

Result. 1260 or 1344

Solution. It is easy to see that there have to be at least four planes in each of three possible directions (if in one of
the directions there are less than five layers of blocks, then the number of at-least-one-green-side blocks is greater than
the number of inside blocks). Denote the numbers of planes in different directions by a+ 3, b+ 3, c+ 3, where a, b, c
are positive integers. It follows that (a+ 3) + (b+ 3) + (c+ 3) = 33, so a+ b+ c = 24.

The problem condition can be rewritten as

(a+ 4)(b+ 4)(c+ 4) = 2(a+ 2)(b+ 2)(c+ 2)

which yields abc = 240 = 24 · 3 · 5 after simplification. Since a+ b+ c is even, either (1) exactly one or (2) all three of
numbers a, b, c are even.

In the case (1), one of the numbers a, b, c (w.l.o.g. a) must be divisible by 16 and since a+ b+ c = 24 < 2 · 16, we
have a = 16. It follows that b+ c = 8 and bc = 15, so {b, c} = {3, 5}. We can now calculate the total number of blocks:
(a+ 4)(b+ 4)(c+ 4) = 20 · 7 · 9 = 1260.

In the case (2) we have w.l.o.g. a = 4x, b = 2y, c = 2z where xyz = 15 and 2x+ y + z = 12. The only possibility is
x = 3, {y, z} = {1, 5}, which gives (a+ 4)(b+ 4)(c+ 4) = 16 · 6 · 14 = 1344.

Problem 54. Given a positive integer n, let p(n) be the product of non-zero digits of n. Find the largest prime
divisor of the number p(1) + · · ·+ p(999).

Result. 103

Solution. Let S = p(1) + · · ·+ p(999). By expanding A = (0 + 1 + 2 + · · ·+ 9)(0 + 1 + 2 + · · ·+ 9)(0 + 1 + 2 + · · ·+ 9)
one can see that A would be the result if we multiplied by zero digits as well. Hence we have S = (1 + 1 + 2 + · · ·+
9)(1 + 1 + 2 + · · ·+ 9)(1 + 1 + 2 + · · ·+ 9)− 1 because of the extra 1 which we do not want to count. So

S = 463 − 1 = (46− 1)(462 + 46 + 1) = 33 · 5 · 7 · 103

and the conclusion follows.

Problem 55. Let (an)∞n=1 be a strictly increasing sequence of positive integers such that 9 | a3k−2, 14 | a3k−1, and
19 | a3k for all positive integers k. Find the smallest possible value of a2016.

Result. 14478

Solution. We may assume that for all n the value of an is the smallest integer greater then an−1, which satisfies
the divisibility condition. Observe that given a3k there are only two options for a3k+3: Either a3k+3 = a3k + 19, or
a3k+3 = a3k + 38. The latter occurs if and only if there are integers c, d, 5 ≤ d ≤ c ≤ 9, such that 9 | a3k + c and
14 | a3k + d, since this implies a3k+1 = a3k + c and a3k+2 = a3k + 14 + d ≥ a3k + 19.

There are exactly
(
6
2

)
= 15 pairs (c, d) satisfying 5 ≤ d ≤ c ≤ 9. Since the numbers 9, 14, and 19 are pairwise

coprime, the Chinese remainder theorem guarantees that for each such pair (c, d) there is exactly one non-negative
integer a3k less than 9 · 14 · 19 such that 19 | a3k, 9 | a3k + c and 14 | a3k + d. Therefore there are exactly 15 terms
a3k less than 9 · 14 · 19 for which a3k+3 = a3k + 38. It is easy to see that the difference of no two of these terms is
19 and that 9 · 14 · 19− 19 is not such a number, which means that a3` = 9 · 14 · 19 for some `. From the fact that
a3k+3 = a3k + 38 happens exactly 15 times we infer that ` = 9 · 14− 15 = 111.

For the terms an succeeding a333, the remainders modulo 9, 14, and 19 is the same as for an−333, so we obtain the
relation an+333 = an + 9 · 14 · 19. We may easily compute that a18 = 114, and so

a2016 = a6·333+18 = 6 · 9 · 14 · 19 + 114 = 14478.

Problem 56. Let P be a point inside triangle ABC. Points D, E, F lie on the segments BC, CA, AB, respectively,
such that the lines AD, BE, CF intersect in P . Given that PA = 6, PB = 9, PD = 6, PE = 3, and CF = 20, find
the area of triangle ABC.

Result. 108

Solution. Denote by [XY Z] the area of triangle XY Z. From AP = DP we obtain [ABP ] = [BDP ] and [APC] =
[DCP ]. Further, 3EP = BP implies that 3[APE] = [ABP ] and

3[CEP ] = [BCP ] = [BDP ] + [DCP ] = 3[APE] + [APE] + [CEP ],

and so [CEP ] = 2[APE]. We conclude that [ABP ] = [BDP ] = [APC] = [DCP ]; in particular, BD = CD.
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Put k = FP : CP . Then from AP = DP and ∠APF = ∠CPD we have [AFP ] = k[DCP ]; similarly, [FBP ] =
3k[CEP ]. Combining with the known ratios above we get k = 1/3, therefore FP = 5, CP = 15. If we complete triangle
CPB to a parallelogram CPBQ, we may note that BP 2 + PQ2 = BQ2, and so ∠DPB = 90◦.

A

B

C

FP

E

D

Q

We conclude that

[ABC] = 4[BDP ] = 4 · 1

2
· 6 · 9 = 108.

Problem 57. Find the last two digits before the decimal point of the number (7 +
√

44)2016.

Result. 05

Solution. Firstly observe that the number 7−
√

44 is strictly between 0 and 1, so the same holds for (7−
√

44)2016.
Moreover, the number (7 +

√
44)2016 + (7−

√
44)2016 is readily seen to be an integer using the binomial formula (the

odd powers of
√

44 cancel out), so, in fact,

b(7 +
√

44)2016c = (7 +
√

44)2016 + (7−
√

44)2016 − 1.

Exploiting the fact that 122 ≡ 44 (mod 100), we obtain

(7 +
√

44)2016 + (7−
√

44)2016 ≡ (7 + 12)2016 + (7− 12)2016 (mod 100),

so it suffices to find the last two digits of 192016 and 52016. The latter is just 25, as 53 ≡ 52 (mod 100). To handle the
former one, employ the binomial formula again to obtain

(20− 1)2016 ≡
(

2016

2015

)
· 201 · (−1)2015 +

(
2016

2016

)
(−1)2016 ≡ −19 (mod 100)

(all the terms up to the last two ones are divisible by 202). We conclude that the sought digits are −19 + 25− 1 = 05.

Alternative solution. As above, we shall seek the last two digits of the number (7 +
√

44)2016 + (7 −
√

44)2016. As
the numbers 7 +

√
44, 7−

√
44 are roots of the quadratic equation x2 − 14x+ 5 = 0, the sequences (αn)n≥0, (βn)n≥0,

defined via αn = (7 +
√

44)n and βn = (7−
√

44)n, are subject to the recurrence relation αn+2 − 14αn+1 + 5αn = 0
and the same for βn. Moreover, the same holds for their sum, γn = (7 +

√
44)n + (7−

√
44)n. Our goal is to compute

γ2016 mod 100.
Put γ̃n = γn mod 100. The sequence (γ̃n)n≥0 is completely determined by the recurrence relation γ̃n+2 =

(14γ̃n+1 − 5γ̃n) mod 100 and the initial values γ̃0 = 2, γ̃1 = 14. Further, since γ̃n attains only finitely many values and
every term depends only on the previous two, the sequence has to be periodic. By computing several of its values,

2, 14, 86, 34, 46, 74, 6, 14, 66, 54, 26, 94, 86, 34, . . . ,

we see that from γ̃2 on, the sequence is periodic with period 10; thus γ̃2016 = γ̃6 = 6. Since the sought number is one
less, the last two digits are 05.
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