
Problem 1. In a game for five players, one of them gets a point in every round. The game ends as soon as one of the
players collects 10 points. How many rounds at most can the game have?

Result. 46

Solution. When the game ends, the winner has 10 points, while all the other players have at most 9 points, which
sums up to 10 + 4 · 9 = 46.

Problem 2. Gleb has four cards with the numbers 1, 2, 3 and 6 written on them. He wants to arrange all the cards
so that they form two numbers A and B such that A is a multiple of B, e.g. A = 36 and B = 12. In how many ways
can he do it?

Result. 21

Solution. Let us consider two cases:
I. B contains one card and A contains three. Let us consider the possible values of B:

• B = 1: A is any permutation of 2, 3, 6 → 6 options.

• B = 2: A must end with 6 → 2 options.

• B = 3: A is any permutation, since the sum of digits is divisible by 3 → 6 options.

• B = 6: A must end with 2 → 2 options.

II. A and B both contain two cards. Then the ratio A/B will be less than 6, so it can be 1, 2, 3, 4, or 5. Let us
work out these possibilities:

1: This is not possible, as it would imply A = B.

2: A must end with 2 or 6. If A ends with 2, then B must end with 6 or 1. In the former case, we get 32 and 16, in
the latter, 62 and 31 → 2 options. If A ends with 6, then B must end with 3, we get 26 and 13 → 1 option.

3: A must start with 6 or 3. In the former case, B must start with 2, we get 63 and 21. In the latter case, B must
start with 1, we get 36 and 12 → 2 options.

4: A must start with 6 and end with 2, since it is even. So A = 62, and it is not divisible by 4.

5: A must end with 5 or 0, but this is not possible.

Summing everything up, we get 21 numbers.

Problem 3. The picture contains four squares, one of them has an area of 8. What is the area of the largest one?

8

Result. 18

Solution. The squares have side lengths in the ratio of 3 : 2 : 1. Hence, the area of the largest square is
(
3
2

)2 · 8 = 18.

Problem 4. There were once several magpies, mathematicians, and centaurs in a park. In particular, there were 15
tails and 94 hands in total. How many legs were there?

Note: Magpies have no hands, two legs and one tail, mathematicians have two hands, two legs, but no tail while
centaurs have two hands, four legs and one tail.

Result. 124

Solution. We denote the number of magpies, mathematicians, and centaurs by g, m and c. Then the condition on
the number of tails implies g + c = 15, while the condition on the number of hands translates to 2m+ 2c = 94. The
number of legs is 2g + 2m+ 4c, which is 2(g + c) + (2m+ 2c) = 30 + 94 = 124.

Problem 5. There are three channels on your TV: 1st, 2nd, and 3rd. From each channel, you can switch only to a
channel with the number differing by one, e.g., from the 1st only to the 2nd. You start watching the second channel
and then switch the channel 11 times. How many different sequences of channels can you obtain?

Result. 64

Solution. There will be twelve channels in the sequence. The channels in odd positions must be the 2nd for sure, and
each of the channels in even positions could be either the 1st or 3rd. There are six such positions, so we get 26 = 64.
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Problem 6. There are two congruent rectangles and one given angle size in the picture. Determine the size of the
angle labelled by the question mark in degrees.

234◦

?

Result. 27◦

Solution. Let us label the points as on the picture below. The common diagonal AB bisects the angle ∠FBD, hence

∠FBA =
360◦ − 234◦

2
= 63◦.

Moreover, since the dashed line EF is parallel to AB, we get for the sum of angles ∠EFB+∠FBA = 180◦. Subtracting
the known right angle ∠AFB, we get

α = 180◦ − 90◦ − 63◦ = 27◦.

A

E F

B

C D

234◦
63◦

α

Problem 7. What is the value of x3 − 14x+ 2024 if x2 − 4x+ 2 = 0?

Result. 2016

Solution. We take the value of interest x3−14x+2024 and subtract x(x2−4x+2) = 0 in order to cancel x3, obtaining
4x2 − 16x+ 2024. Now we want to cancel 4x2, so we subtract 4(x2 − 4x+ 2) = 0 and obtain 2016 which is the answer.

Problem 8. Michal chose a positive integer n and wrote down the number of its even digits, odd digits, and all digits
in this order. Reading these three numbers as one positive integer from left to right and ignoring possible zeros on the
left, he obtained n again. What is the smallest such n?

For example, if Michal took the number 2024, then the number of even digits is 4, the number of odd digits is 0,
and the number of all digits is also 4, so he reads the outcome as 404.

Result. 123

Solution. The sought number cannot be a single-digit number because its digit is either even or odd, and hence it is
counted in one of those categories. Similarly, a two-digit number is not feasible as it would need to end with the digit
2, which is even. Assume that the number of digits is 3 therefore, the sum of even and odd digits is also 3. Hence, the
possible numbers are 123, 213, and 303. After applying the transformation from the problem statement, all of these
numbers end up as 123, including 123. Hence, 123 is the sought after solution.
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Problem 9. In the following figure, there is a pentagon with several given angles and sidelengths. Determine a+ b.

60◦

60◦

60◦

60◦

11

4
2

a

b

Result. 16

Solution. Let us extend the pentagon with a parallelogram to an equilateral triangle of side length 11 = 4 + a = 2 + b
as in the picture.

60◦

60◦

60◦

60◦

11

4

2

a b

60◦
2

a

We conclude that a = 7, b = 9, and a+ b = 16.

Problem 10. In the Slovak folk song Kopala studienku (“She was digging a well”), a girl checks whether her well is
equally deep and wide. By definition, a well is a right cylinder, whose height is the depth of the well and whose base
diameter is the width of the well. She knows that she needs a week to dig a well of the desired width but only 1

3 of its
required depth, while Janko Matúška needs a week to dig a well that is sufficiently deep but half as wide as needed. The
effort is proportional to the amount of earth removed. How many days will they need to dig a proper well together?

Result. 12

Solution. The time needed to dig a well is assumed to be proportional to its volume. Because it is a right circular
cylinder, its volume is given by the formula V = π

4 ·D ·W 2, where D stands for depth and W stands for width. Now

we can reason that the girl needs 7 days to dig out π
4 · D

3 ·W 2 = 1
3V of the earth, thus she needs 21 days to dig out the

whole volume V of earth. Similarly, Janko needs 7 days to dig out π
4 ·D ·

(
W
2

)2
= 1

4V of the earth, thus he needs 28
days to dig out the whole volume V of earth. Therefore, the girl can perform 1

21 of the well in a day, and her companion
can perform 1

28 of the well in a day. Together, they can perform 1
21 + 1

28 = 1
12 of the well in a day. Finally, we can

conclude that they need 12 days to build a well together.

Problem 11. Calculate the number of all segments of length
√
5 connecting two square corners in a grid of 10× 10

unit squares.

Result. 360

Solution. First we make the observation that every 2× 1 rectangle contains exactly 2 diagonals of length
√
5. So our

goal is to enumerate the number of 2× 1 rectangles. Suppose that the rectangle is oriented vertically. Then we have 10
possibilities to place it in a column and 9 possibilities for a row. So we have 90 possibilities to place this rectangle in a
10× 10 grid. We can also orient the rectangle horizontally with the same number of possible placements. In conclusion,
we have two diagonals in each of 90 + 90 = 180 rectangles, so we have 360 diagonals in total.

Problem 12. If M , A, T , and H are distinct non-zero digits such that the equation

2024 +HAHA = MATH

holds, what is the largest possible value of the four-digit number MATH?

Result. 5963
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Solution. Since MATH and HAHA have the same hundreds digit and the corresponding digit in 2024 is 0, we see
that there is no carry when adding the tens digits on the left-hand side. Therefore, TH = HA+ 24 and M = H + 2.
However, adding A and 4 must produce a carry, for otherwise we would have T = H + 2 = M , and the digits are
assumed to be distinct. This implies that H = A+ 4− 10 = A− 6, hence M = A− 4 and T = A− 3. From this, we
easily get that MATH is one of 3741, 4852, or 5963, the last value being the greatest.

Problem 13. In the zebra-rectangle with side lengths of 14 and 8, the diagonal is dissected into seven line segments
of equal length. How large is the shaded area?

14

8

Result. 48

Solution. Since the altitudes from the two vertices to the diagonal have equal lengths for all triangles involved, the
shaded area is exactly 3

7 of the total area. Hence the solution is 3
7 · 8 · 14 = 48.

Problem 14. If a new girl joins the math club but 20% of boys leave it, the numbers of boys and girls would be
equal. On the other hand, if one girl leaves the math club and next time the number of girls increases by 30%, the
numbers of boys and girls would also be equal. How many children are there in the math club?

Result. 116

Solution. Let us denote the number of girls by g and the number of boys by b. The statement gives us the following
system of equations:

g + 1 =
4

5
b,

13

10
(g − 1) = b.

Plugging in b = 5
4g +

5
4 from the first equation into the second equation, we get

5

4
g +

5

4
=

13

10
g − 13

10
,

which solves for g = 51, hence b = 13
10 · 50 = 65. Therefore, the answer is g + b = 51 + 65 = 116.

Problem 15. The matchsticks in the picture form nine squares. Remove three of them so that there are exactly five
squares left and each matchstick remains a part of some square. Find the maximal possible sum of numbers assigned
to such a triplet of removed matches.

1 2 3

4 5 6 7
8 9 10

11 12 13
14 15

16 17 18
19 20

Result. 50

Solution. There are 7 squares of side length 1 and two squares of side length 2. To reduce the number of squares to 5,
one has to break exactly 4 squares. To remove a square bounded by matchsticks 3, 7, 6, 10, one needs to remove at least
three of them. Hence, it is one of the squares that will survive. It is important to note that matchstick 6 cannot be
removed as it would break this square and we cannot collect the remaining matchsticks from this square.

Removing matchsticks 11 or 13 breaks both large squares simultaneously. If that happens, then one square needs to
be broken with two removals. Consider a case where a matchstick of 11 is drawn; then there is a possibility of taking
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pair off matchsticks 12, and 13 or the pair of 18, 20. On the other hand, if matchstick 13 was taken, then it could be
either the pair of 1, 4, the pair of 11, 12 or the pair of 16, 19. Out of which, the removal of matchsticks 11, 18, and 20
has the highest sum of 49. If both large squares are intact, that means that the only matchsticks that can be removed
are 5, 12, and 17 and that does not result in a valid configuration.

Since matchstick 6 cannot be taken and one large square needs to be broken, it is safe to assume that both
matchsticks from one of the following pairs are removed: 18, 20 or the pair 16, 19, or the pair 1, 4. Such removal
takes two squares at the same time, one large and one small. After that, there needs to be one matchstick that breaks
exactly two squares. In the case of the pair 18, 20, it can be either matchstick 11 breaking one small and the large one
or 12 breaking two small circles, leaving a total sum of 50. Matchstick 13 cannot be taken, as matchstick 15 would not
be part of any square. In a similar manner, it can be assumed that breaking pair 16, 19 alongside matchstick 13 results
in a total sum of 48. Hence 50 is the sought answer.

Problem 16. Lukáš has a bottle of height 21. It consists of a cylinder of height 16 and an irregular shape at the
bottleneck. Lukáš partly filled the bottle with water. He figured out that the water reached a height of 13. Then he
turned the closed bottle upside down and noticed that the water reached a height of 14. Calculate the percentage of
the volume of the bottle that was filled with water.

21

14
13

16

Result. 65

Solution. Let r denote the base radius. From the first configuration, the volume of water in the bottle is 13πr2.
Similarly, from the second configuration, the volume of air in the bottle is (21− 14)πr2 = 7πr2. Hence, the bottle has
a total volume of (13 + 7)πr2 = 20πr2 and the desired percentage is

13πr2

20πr2
=

13

20
= 65%.

Problem 17. Ondra lives in Hexagonia, a city in which all streets are 1 km long sides of three regular hexagons. He
wants to pick up his girlfriend first and then go to the cinema with her. On the picture, Ondra starts at point A, his
girlfriend lives at point B and the cinema is located at point C. He does not want to walk any of the streets twice.
What is the sum of the lengths of all possible paths he can take (in kilometers)?

A

C

B

Result. 28

Solution. There are four paths from A to B that do not pass through C. One of them allows two ways to get to C,
one path has exactly one possibility to get to C and for the other two paths, it is not possible to get to C without
walking a street twice. Altogether, there are three valid paths to the cinema via his girlfriend. Two of them have
lengths of 10, the other one has a length of 8, hence the result is 28.
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Problem 18. There are two guards patrolling along rectangular routes, as shown in the picture. They walk at a
constant speed, passing from one marked checkpoint to its neighbor in one minute. After how many minutes will they
meet for the first time?

Result. 44

Solution. Let guard A be the one who needs 14 minutes (rectangular path) and B the one who needs 12 minutes
(square path) to complete one round. There are two possible meeting points for the guards. If they meet at the left one
after a full rounds made by A and b full rounds made by B, then the condition

14a+ 2 = 12b+ 8

must hold. This equation simplifies to 7a = 6b+ 3, implying 7 | 6b+ 3. By trying b ∈ {0, 1, 2, . . . } we see that b = 3
and a = 3 is the smallest solution. Similarly, the guards meet at the right point if

14a+ 5 = 12b+ 3

is satisfied. Hence, we get 7a = 6b− 1. So we have 7 | 6b− 1, which forces b ≥ 6. Hence, they meet for the first time
after 14 · 3 + 2 = 44 minutes.

Problem 19. Positive integers a, b, and c satisfy the equations√
a2 + b2 − 172 = c,√
c2 + b2 − 220 = a.

What is the largest possible value of their sum a+ b+ c?

Result. 26

Solution. Square both equations and compute their sum to obtain 2b2 = 392. Since b has to be positive, b = 14 is the
only solution. Plugging this value into the square of the first equation, we obtain a2 + 24 = c2 or c2 − a2 = 24. Put
d = c− a; then d is an even number, since c and a are either both even or both odd.

The value of c2 − a2 = (c − a)(c + a) can be bounded from below by d(d + 2), which for d ≥ 6 is at least 48, a
number larger than 24. Hence, the only options for d are d = 2 and d = 4. In the former case, we obtain a+ c = 12
with the solution a = 5 and c = 7. In the latter case, a + c = 6 with the solution a = 1 and c = 5. Therefore, the
largest possible value of a+ b+ c is 5 + 14 + 7 = 26.

Problem 20. Take a circle, then inscribe and circumscribe two regular hexagons. What part of the area of the
circumscribed hexagon is covered by the inscribed hexagon?

Result. 3
4

Solution. Subdividing into congruent triangles as in the figure and counting leads to the answer 18
24 = 3

4 .
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Alternative solution. Let r be the radius of the circle. Both hexagons can be subdivided into 6 equilateral triangles;
for the inscribed hexagon, the height of each triangle is 1

2

√
3 r, while for the circumscribed one it is r. Therefore, the

scaling factor for lengths is k = 1
2

√
3, and consequently, the scaling factor for areas is k2 = 3

4 .

Problem 21. We call the n-th birthday a square birthday if n > 1 and whenever a prime number p divides n, then
also p2 divides n. For example, n = 8 = 23 works, while n = 56 = 8 · 7 does not. This year, Grandpa Jefo celebrated
his 196th birthday. How many square birthdays has he lived through?

Result. 20

Solution. Any square birthday number needs to be composed of one or multiple factors of the form pk where k > 1.
All such factors less or equal to 196 are S = {4, 8, 9, 16, 25, 27, 32, 36, 49, 64, 81, 100, 121, 125, 128, 144, 169, 196}. We can
see that the product of at least two numbers from S greater than 27 either belongs to S or is larger than 196. From
the numbers smaller or equal to 27, only 8 = 23 and 27 = 33 are not perfect squares. Since a product of perfect squares
is a perfect square, it either means that the result would either belong to S or be larger than 196. Finally, the products
using 8 or 27 and some other numbers from S that are smaller than 196 and not already in S are 27 · 4 = 108 and
8 · 9 = 72. It follows that there are 18 + 2 = 20 such numbers.

Problem 22. The rip-off mathematical contest Mathematical Charge has been ongoing for 10 years. In year n, the
number of questions in the contest was n+ 2, all being numbered in the usual way from 1 to n+ 2. For the 11-th
edition of the contest, the organizers want to take one question from each of the previous years so that they can form a
test of 10 questions numbered 1 to 10, using the already existing numbers. How many different tests could they create,
assuming no two questions from the previous contests are identical?

Result. 38 · 2 = 13122

Solution. The organizers have three questions to choose from in the contest nr. 1. They can choose one of the 4−1 = 3
possible questions from the second contest, as one question number is already occupied. It is easy to see that this
pattern stays, namely that in the k-th contest there are already k − 1 questions unavailable due to (some) previous
choices leaving three options, until contest nr. 9 which contains a question number 11 which is too large, thus leaving
only two questions to choose. Finally, from the test nr. 10, there are questions nr. 11, and nr. 12, which cannot be
chosen, leaving only one suitable question. Altogether, there are 38 · 2 = 13122 such tests.

Problem 23. Determine the smallest positive integer that has 1 as its first digit and the following property: When
the digit 1 is relocated to the end of the number, the resulting number is three times the original number.

Here is an example of relocating the first digit: 174 → 741.

Result. 142857

Solution. Knowing that the last digit of the number is 1, one can try to reconstruct the number backwards as follows:

. . . x · 3 = . . . 1 ⇒ x = 7

. . . y7 · 3 = . . . 71 ⇒ y = 5

. . . z57 · 3 = . . . 571 ⇒ z = 8

. . . t857 · 3 = . . . 8571 ⇒ t = 2

. . . s2857 · 3 = . . . 28571 ⇒ s = 4

. . . r42857 · 3 = . . . 428571 ⇒ r = 1.

Indeed, 142857 · 3 = 428571 holds.

Alternative solution. Any positive integer starting with the digit 1 and at least two digits can be written as 10k + a
for some k ≥ 1 and some k-digit number a. After relocating the digit 1 from the beginning to the end, the number
changes to 10a+ 1. Hence, we want to solve the equation

3 · (10k + a) = 10a+ 1

for k and a; let us simplify it to
3 · 10k − 1 = 7a.

The number on the left-hand side is nothing else than a 2 followed by k nines. Take as many nines as needed and divide
the number 2999 . . . by 7 until there is no remainder. This process leads to a = 42857 and thus to the solution 142857.
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Problem 24. The picture shows a configuration of two pairs of congruent squares (of positive sidelengths), with the
two marked points having distance one. What is the sum of the areas of the four squares?

1

Result. 58

Solution. Denoting x the sidelength of the smaller squares and using the Pythagorean theorem for the shaded right
triangle in the picture, we get

(2x)2 + (1 + x)2 = (1 + 2x)2.

This equation simplifies to x2 = 2x, hence we get x = 2. The answer is then 2(22 + 52) = 58.

1 x

x

Problem 25. Climber Christian is being lowered off the top of a vertical wall. This means that he is tied to one
end of the rope, which goes through a fixed point on the top of the wall and then down to Lukas, who stands on the
ground and lets the rope slip in a controlled way. The rope is elastic, and Christian’s weight makes its loaded part
(between him and Lukas) stretch by 20%. The rope has a mark in the middle, and as Christian is being lowered off, he
meets that mark at one third of the height of the wall above the ground. He is relieved, as this assures him that the
rope is long enough, and he starts wondering how high the wall actually is. When he touches the ground and the rope
has not gone slack yet, there are still 10 meters of loose rope left. Neglecting the heights of the people and lengths of
the knots used, what is the height of the wall in meters?

Result. 18

Solution. Let us denote the length of the unstretched rope by l and the height of the wall by h. When the climber
meets the mark, one half of the rope (stretched) covers twice the distance of the climber from the top, so we have

6

5
· l
2
= 2 · 2h

3
.

When the climber touches the ground, we similarly obtain

6

5
(l − 10) = 2h,

which, after substituting l = 20h
9 from the first equation, gets easily solved and yields h = 18.

Problem 26. A drawer contains n socks. When two socks are drawn randomly without replacement, the probability
that both of them are black is 2/15. What is the smallest possible value of n?

Result. 10

Solution. Let b denote the number of black socks. Then the probability that both socks are black is b
n · b−1

n−1 . Since

this expression is equal to 2
15 , the following equation must hold:

15 · b · (b− 1) = 2 · n · (n− 1).

Since both 3 and 5 divide the left-hand side and both are coprime to 2, they must divide n · (n− 1) on the right-hand
side. Now start with small multiples of 3 and 5 for n to discover that n = 6 leads to 15 · b · (b − 1) = 2 · 6 · 5 = 60.
However, b · (b−1) = 4 cannot be fulfilled by any integer, therefore n = 6 is not a solution. If n = 10, then b · (b−1) = 12
can be achieved by b = 4. Therefore, the answer for n is 10.
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Problem 27. Find the largest integer satisfying the following conditions:

• it has exactly seven digits,

• no two digits are the same,

• it is a multiple of 11.

Result. 9876504

Solution. We will use the condition of divisibility by 11: a number is divisible by 11 if and only if the difference
between its sum of digits on odd positions and its sum of digits on even positions is divisible by 11.

Among all numbers with a specified number of digits, seven in this case, the largest are the ones that start with the
largest digits. Thus, let us start looking for a solution by choosing the digits from 9 downwards. After writing 98765,
we see that the sum of the “odd” group is 9 + 7+ 5 = 21 and the sum of the “even” group is 8 + 6 = 14. The difference
is 7 and we have to make it divisible by 11, using just two digits from the set {0, 1, 2, 3, 4}. The only way is to add 0 to
the “even” group and 4 to the “odd” group, which produces the solution 9876504. Because all the other solutions
would have to begin with a five-digit sequence smaller than 98765, this is indeed the largest one.

Alternative solution. Start with the largest number, 9876543, consisting of seven distinct digits. Observe either using
the rule about division by 11 or doing long division that this number is not divisible by 11, but 9876537 is, and this is
the largest multiple of 11 smaller than the number we started with. Since its digits are not distinct, we subtract 11 and
check the digits of the newly obtained number with respect to distinctness. After some steps

9876537 −→ 9876526 −→ 9876515 −→ 9876504

we obtain the sought-after number, 9876504.

Problem 28. Consider a quadrilateral ABCD with side lengths AB = 5, BC = 3, and CD = 10. The measure of
the internal angle at B is 240◦, while the one at C is 60◦. Calculate the length AD.

Result. 13

Solution. Let us create an equilateral triangle BCE with E on the segment CD. Then AED is a triangle where
AE = 8, ED = 7, and ∠DEA = 120◦. Therefore, by the Law of Cosines, AD2 = 82 + 72 − 2 · 7 · 8 · cos 120◦ = 169, so
AD = 13.

A

D

FB

C

E
240◦

60◦
5

3 3

7
3.5

√
3

3.5

Alternative solution without using the Law of Cosines. If the triangle AED is extended by half of an equilateral
triangle of side length 7, we can use the Pythagorean theorem to get AD2 = (5 + 3 + 3.5)2 + (3.5 ·

√
3)2 = 169.

Problem 29. How many ordered quadruples (a, b, c, d) of positive integers satisfy the equation

2024 = (2 + a) · (0 + b) · (2 + c) · (4 + d)?

Result. 18

Solution. First of all we need the prime factorization of 2024, which is

2024 = 23 · 11 · 23.

Since a, b, c, and d are positive integers, we have 2 + a ≥ 3, 2 + c ≥ 3, and 4 + d ≥ 5. A factor 1 or a factor 2 on the
right hand side may occur only once in (0 + b) and a factor 4 may appear only either in (2 + a) or (2 + c).
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Since the product on the right-hand side of the given equation consists of four factors, there are four possible
factorizations of 2024, with at most one factor being less than 4, namely

2024 = 1 · 8 · 11 · 23 and 2024 = 1 · 4 · 22 · 23 and 2024 = 1 · 4 · 11 · 46 and 2024 = 2 · 4 · 11 · 23.

For the first factorization, we have b = 1, and the remaining factors can be assigned to a+ 2, c+ 2, and d+ 4 in any
order, yielding 6 solution. In the second factorization, we have b = 1, then either a + 2 = 4 or c + 2 = 4. And in
each of these cases, the remaining factors can be assigned in two ways, so there are in total 4 solutions for the second
factorization. Analogously, there are 4 solutions for each of the third and fourth factorizations. Therefore, in total,
there are 18 different solution quadruples:

factorization of 2024 solution
a b c d

2024 = 8 · 1 · 11 · 23 6 1 9 19
2024 = 8 · 1 · 23 · 11 6 1 21 7
2024 = 11 · 1 · 8 · 23 9 1 6 19
2024 = 11 · 1 · 23 · 8 9 1 21 4
2024 = 23 · 1 · 8 · 11 21 1 6 7
2024 = 23 · 1 · 11 · 8 21 1 9 4
2024 = 4 · 2 · 11 · 23 2 2 9 19
2024 = 4 · 2 · 23 · 11 2 2 21 7
2024 = 11 · 2 · 4 · 23 9 2 2 19
2024 = 23 · 2 · 4 · 11 21 2 2 7
2024 = 4 · 1 · 22 · 23 2 1 20 19
2024 = 4 · 1 · 23 · 22 2 1 21 18
2024 = 4 · 1 · 46 · 11 2 1 44 7
2024 = 4 · 1 · 11 · 46 2 1 9 42
2024 = 22 · 1 · 4 · 23 20 1 2 19
2024 = 23 · 1 · 4 · 22 21 1 2 18
2024 = 46 · 1 · 4 · 11 44 1 2 7
2024 = 11 · 1 · 4 · 46 9 1 2 42

Problem 30. Let x and y be positive integers such that

2x · 3y =
(
24

1
2+

1
3+

1
4+···+ 1

60

)
·
(
24

1
3+

1
4+

1
5+···+ 1

60

)2
·
(
24

1
4+

1
5+

1
6+···+ 1

60

)3
· · ·
(
24

1
60

)59
.

Determine x+ y.

Result. 3540

Solution. Considering 2x · 3y = 24k, we have

k =
1

2
+

(
1

3
+

2

3

)
+

(
1

4
+

2

4
+

3

4

)
+

(
1

5
+

2

5
+

3

5
+

4

5

)
+ · · ·+

(
1

60
+

2

60
+ · · ·+ 59

60

)
=

=
1

2
+

2

2
+

3

2
+

4

2
+ · · ·+ 59

2
=

=
1

2
· (1 + 59) · 59

2
=

= 15 · 59.

Then, 2x · 3y = (23 · 31)15·59, which means that x = 3 · 15 · 59 = 45 · 59 and y = 15 · 59. Therefore, x+ y = 60 · 59 = 3540.

Problem 31. Annie loves apples, especially sequences of red and green apples of length 18 arranged in such a way
that each dozen of consecutive apples contains at least seven green apples. How many such sequences containing at
most eight green apples in total exist?

Result. 21

Solution. Let us focus just on the first and last dozen for the moment. If the middle semi-dozen of apples (i.e.,
apples 7–12) contains just green apples, both the first and last dozen are missing only one green apple, which is easily
fixed by placing a green apple into both the first and last semi-dozens, so eight green apples are enough. If some of
the middle-dozen-apples are red, one would need more green apples in total, as for each green apple removed from
the middle semi-dozen one needs to add two apples (one into the first semi-dozen and the other one into the last
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semi-dozen). Therefore, 8 is the minimal amount of green apples needed, with six of them being placed in the middle,
one in the beginning, and one towards the end.

However, the first and last green apples cannot be placed into their semi-dozens arbitrarily. In order to meet the
condition for every dozen consecutive apples, the distance between the two green apples cannot exceed 12, e.g. if the
first green apple is placed at position 2, the last can be placed either at position 13 or at position 14. Depending on the
position of the first apple, the last apple thus has 1 to 6 possible positions. Adding these up gives 1+2+3+4+5+6 = 21
possible sequences.

Problem 32. Fero has coins with values of 1 ct, 2 ct, and 5 ct. He has 33 of the 1 ct type, 106 of the 2 ct and 31 of
the 5 ct type. He wants to split them into two piles with the same number of coins and the same value and give one of
the piles to his sister. In how many ways could he do this? Coins of the same value are considered indistinguishable.

Result. 12

Solution. Let a, b, c be the number of 1 ct, 2 ct, and 5 ct coins, respectively, in the sister’s pile. Then, we have the
equations

a+ b+ c =
1

2
(33 + 106 + 31) = 85,

and

a+ 2b+ 5c =
1

2
(33 + 2 · 106 + 5 · 31) = 200.

By subtracting the first equation from the second, we obtain b+ 4c = 115. This equation has multiple solutions of the
form b = 115−4c for any given c. However, the constraints 0 < 115−4c < 106 for b imply c ∈ {3, 4, . . . , 28}. But not all
solutions have a valid amount of 1 ct coins. Therefore, we have to add the condition 0 ≤ 85−(115−4c+c) = −30+3c ≤ 33
for c. We can see that only values of c from the set {10, 11, . . . 21} lead to a valid solution. Hence, there are 12 possible
ways.

Problem 33. In the figure, an equilateral triangle, a regular pentagon, and a rectangle are such that some of their
vertices are on a circle (only a part of which is shown). Find the measure of the marked angle in degrees.

?

Result. 36◦

Solution. Let us recall that, given a circle ω, the angle under which a segment XY with endpoints on ω is visible
from another point Z on ω is given only by on which of the two arcs (in which X and Y split the ω) it lies and the
sum of these two values equals 180◦.

A
B

C

E

D

In our situation, labelling some of the points as in the picture above and using the well-known measures of internal
angles of regular pentagon and triangle, we have

∠AEC = 180◦ − ∠ABC = 180◦ − 60◦ − 108◦ = 12◦.

Similarly, we have
∠BED = 180◦ − ∠BCD = 180◦ − 60◦ − 90◦ = 30◦.

Finally, since ABC is an isosceles triangle, we have

∠BEC = ∠BAC =
180◦ − 108◦ − 60◦

2
= 6◦

and hence, because of how these three angles at E overlap, we compute

∠AED = 12◦ + 30◦ − 6◦ = 36◦.

11



Problem 34. In how many ways can we place 9 rooks on a 4× 4 chessboard such that each rook is attacked by some
other rook? Two rooks attack each other if they are in the same row or column.

Result. 11296

Solution. Let us count the number of configurations where at least one rook is not attacked by any other rook. Such a
rook needs to be alone in the row and the column at the same time, which means that there is at most one such rook.
It can be placed at any square in 4 · 4 = 16 ways. Removing the corresponding row and column leaves nine squares
where the remaining eight rooks must fit. The empty square can be chosen in 9 ways. Altogether, there are 16 · 9 = 144
ways of doing that. The total number of ways to choose nine squares from sixteen squares equals

(
16
9

)
= 11440, and

hence the desired result is 11440− 144 = 11296.

Problem 35. Find the largest positive integer N that is not a prime number and all its divisors except for N itself
are smaller than 100.

Result. 9409

Solution. Since N is not a prime number, it is either 1 or there is a prime number p < N that divides N . The
requirement p < 100 leads to

p ≤ 97.

Observe that N = 972 = 9409 satisfies the conditions.
Now suppose there is a number N ′ > 9409 that also meets the given conditions. If p ≤ 97 is a prime number that

divides N ′, the quotient N ′

p is an integer greater than 97. This yields N ′

p ∈ {98, 99}, since any divisor of N ′ has to be

smaller than 100. But then N ′ is divisible by k ∈ {2, 3}, and the given condition leads to

N ′ = k · N
′

k
≤ 3 · 99 < 972,

which is a contradiction.
Therefore, N = 9409 is the sought number.

Problem 36. In Line City, there are three bus lines, a central station, and bus stops numbered by positive integers
1, 2, 3, . . . All three lines start at the central station, denoted as c in the figure, and then pass all the stops in increasing
order. Line A stops at all of them (numbers 1, 2, 3, . . . ), line B stops at every second one (numbers 2, 4, 6, . . . ), and
line C stops only at every third stop (numbers 3, 6, 9, . . . ). Danko starts his journey at the central station, picks a bus
and aims to travel to stop nr. 17. At every station where his current bus stops, he can either get off the bus and take
another one or continue on the same bus to its next stop. In how many ways can Danko reach his final destination if
journeys differing only in waiting times are considered to be identical?

A
B
C

c 1 2 3 4 5 6 7 8 9
· · ·
· · ·
· · ·

Result. 845

Solution. Denote a bus stop s0 if all three bus lines stop, and denote sk the k-th bus stop after s0 by the bus lane A.
Now calculate in how many ways Danko can reach the bus stop s6 from the bus stop s0.

1. Danko can reach the bus stop s1 in exactly one way, and that is by the bus lane A.

2. There are two ways to get to the bus stop s2, and that is either by bus lane A from the bus stop s1 or by bus
lane B from the bus stop s0.

3. To reach the bus stop s3, Danko either took the bus lane C from the bus stop s0 or the bus lane A from the bus
stop s2, which can be reached by 2 ways; hence, there are 3 possible ways.

4. To reach the bus stop s4, it is either lane A from stop s3 or lane B from stop s2 hence, there are 3 + 2 = 5 ways.

5. To reach the bus stop s5, there is only one way, and that is by lane A from stop s4 hence, there are 5 ways.

6. Finally, to reach the bus stop s6, it is either by the bus lane A from the bus stop s5, or by the bus lane B from
the bus stop s4, or by the bus lane C from the bus stop s3 hence, there are 3 + 5 + 5 = 13 ways.

12



Bus stops where all lines stop are the central station c, the bus stop nr. 6 and the bus stop nr. 12. Since any bus
stop where all bus lines stop can act as the bus stop s0 there are 13 ways for Danko to reach the bus stop nr. 6 from
the central station c and the bus stop nr. 12 from the bus stop nr. 6. It can be deduced that to reach the 17-th stop
from stop nr. 12 is the same as to reach the bus stop s5 from the s0 and hence there are 5 ways. Together, there are
5 · 13 · 13 = 845 ways for Danko to reach the stop nr. 17.

Alternative solution. Let us refer to the stops by their numbers, setting c = 0. Every stop s is reachable via line A, so
every journey to the preceding stop s− 1 can be extended to stop s via line A. If line B stops at s, then the journeys
can be extended from stop s− 2 to s via line B. A similar fact holds for stop s where line C stops. Therefore, if we
denote by J(s) the number of ways Danko can reach stop s, then for s ≥ 1 we obtain

J(s) = J(s− 1)

+ J(s− 2) if s is divisible by 2

+ J(s− 3) if s is divisible by 3.

Since the central stop is “reachable” in only one way, we have J(0) = 1 and we can determine J(17) using the given
recurrence; the arrows under the table show which values are added to give the number in each cell.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 1 2 3 5 5 13 13 26 39 65 65 169 169 338 507 845 845

s

J(s)

Problem 37. By ⌊x⌋ we denote the largest integer that is not greater than the real number x. Let a1, a2, . . . be a
sequence of real numbers such that a1 =

√
3 and for each n ≥ 1, we have

an+1 = ⌊an⌋+
1

an − ⌊an⌋
.

What is the value of a2024?

Result. 3034 +
√
3+1
2 = 3035 +

√
3−1
2

Solution. Note that a1 has the decimal part a1 − ⌊a1⌋ =
√
3− 1. Hence, it can be written as a1 = 1 +

√
3− 1. We

calculate the first few terms

a2 = 1 +
1√
3− 1

= 1 +

√
3 + 1

2
= 2 +

√
3− 1

2
,

a3 = 2 +
2√
3− 1

= 2 +
2
√
3 + 2

2
= 2 +

√
3 + 1 = 3 + 1 +

√
3− 1,

a4 = 4 +
1√
3− 1

= 4 +

√
3 + 1

2
= 3 + 2 +

√
3− 1

2
.

Observe that terms a1 and a3 have the same decimal part
√
3− 1 and the difference a3 − a1 = 3. The same reasoning

applies to the terms a2 and a4, which have the same decimal part
√
3−1
2 and difference a4 − a2 = 3. This leads us to

the hypothesis a2k+1 = 3k + 1 +
√
3− 1 and a2k+2 = 3k + 2 +

√
3−1
2 , where k = 0, 1, . . . . The validity for all k can be

proven by induction; it is clear for k = 1 and k = 2. For the rest, it suffices to plug the formulas into the definition
an+1 = ⌊an⌋+ 1

an−⌊an⌋ . Observe that

a2k+2 = ⌊a2k+1⌋+
1

a2k+1 − ⌊a2k+1⌋
= 3k + 1 +

1√
3− 1

= 3k + 1 +

√
3 + 1

2
= 3k + 2 +

√
3− 1

2
,

a2·(k+1)+1 = ⌊a2k+2⌋+
1

a2k+2 − ⌊a2k+2⌋
= 3k + 2 +

2√
3− 1

= 3k + 2 +
2 · (

√
3 + 1)

2
= 3 · (k + 1) + 1 +

√
3− 1.

Hence, a2024 = 3034 +
√
3+1
2 = 3035 +

√
3−1
2 .
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Problem 38. There is a square billiard table 10×10 with two balls, as shown in the picture. Each ball is dimensionless
(a point), always moves straight, and when it hits a wall, it bounces off at the same angle. Consider all the paths, in
which ball A bounces off exactly two walls before hitting ball B and compute the sum of squares of lengths of these
paths.

1

}

A
B

Result. 2520

Solution. Let us first note that A = [2, 4] and B = [6, 3] with respect to the lower left corner of the square. Reflect A
and B across the sides of the square and label everything according to the picture below.

B2

A

B B3

B4

B1

K
L

MN

A1

A2

A3

A4

Consider the trajectory from A to B that bounces off KN and then MN and reflect its parts adjacent to the points
A (resp. B) across KN (resp. MN). Due to the reflection angle rule, we obtain precisely the segment A1B2. (In the
sequel, we will say that the trajectory was straightened into A1B2). Note that this is the only admissible trajectory that
bounces off precisely these two sides of the square. Indeed, straightening a possible trajectory A → MN → KN → B
results in the segment A2B1, which does not intersect the square KLMN . This is due to the properties of reflection
implying that N is the midpoint of both A1A2 and B1B2. Therefore, such a trajectory is not possible.

Similarly, all the desired trajectories bouncing off two adjacent sides of the square KLMN straighten into one side
of the quadrilateral A1B2A3B4 or its shifted copy B1A2B3A4. From the corresponding congruent sides, exactly one is
used because the other side is in the invalid configuration. It follows that these trajectories contribute to the sum of
lengths squared by the sum of squares of the lengths of sides of A1B2A3B4. Using Pythagoras’ theorem and the fact
that its diagonals are perpendicular and intersect at point C = [6, 4] (see the picture below), we calculate that

2(82 + 132 + 122 + 72) = 852.
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C

13

12
A

B

︸
︷︷

︸
︸

︷︷
︸︸︷︷︸ 8

︸ ︷︷ ︸

7

A

Now it remains to consider the trajectories bouncing off two opposite sides of the square KLMN , such as the two
shown below.

B2

A

B

B4

K
L

MN

A2

A4

In this case, both orders are possible, resulting in a contribution equal to the sum of squares of the diagonals of
parallelograms A2B2B4A4 and A1A3B3B1. Using the fact that the sum of squares of diagonals in a parallelogram
equals the sum of squares of its sidelengths, we obtain

2(202 + 12 + 42) = 834,

for both of the parallelograms. Hence, the total sum is

852 + 2 · 834 = 2520.

Problem 39. Let x ∥ y denote a concatenation of two positive integers, that is, a number obtained by first writing
out the digits of x as they appear in x and then doing the same for y; for example, 3 ∥ 4 = 34, 24 ∥ 5 = 245, and
20 ∥ 24 = 2024. A positive integer n is called threevisible if there exist three pairwise distinct positive integers (without
leading zeros) a, b, and c such that n = a ∥ b ∥ c and a divides b and b divides c. What is the largest threevisible
five-digit number?

Result. 94590
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Solution. Note that since all numbers a, b, and c are distinct, and from the divisibility condition, it must hold that
2 · a ≤ b and 2 · b ≤ c. Let s(k) denote the number of digits of k. From the divisibility conditions, it follows that digit
counts s(a), s(b) and s(c) must be non-decreasing. Therefore, there are only two cases:

1. Digit counts satisfy s(a) = 1, s(b) = 1, and s(c) = 3. Then the number a is at most 4 < 9
2 . This leads to the

result a = 4, b = 8, and c = 992.

2. Digit counts satisfy s(a) = 1, s(b) = 2, and s(c) = 2. Then the number b is at most 49 < 99
2 . To maximize

the number a ∥ b ∥ c, assume that the first digit is 9. Then the maximal possible b is b = 45 and hence c = 90.
Considering any smaller a leads to a smaller result.

Therefore, the maximal possible number is 94590.

Problem 40. By writing Sx, a string of digits with a subscript x (some positive integer larger than all used digits),
we indicate that base x should be used to interpret the string. For example 2427 = 2 · 72+4 · 7+2 = 12810 = 100000002.
Find the sum of all integers x > 5 for which the statement

2024x is divisible by 15x

holds true.

Result. 471

Solution. We look for x such that the fraction 2x3+2x+4
x+5 is an integer. Since

2x3 + 2x+ 4

x+ 5
= 2x2 − 10x+ 52− 256

x+ 5
,

it is sufficient for x+ 5 to divide 256 = 28. Since x > 5, we search for divisors that are at least 10. All such divisors are
16, 32, 64, 128, and 256. Therefore, the sought-after solution is the sum

8∑
i=4

(2i − 5) = 29 − 24 − 25 = 512− 16− 25 = 471.

Problem 41. We have two boxes: the first one contains five perfect light bulbs and nine faulty ones, whereas the
second one contains nine perfect and five faulty bulbs. The perfect bulbs work always, whereas the faulty ones only
with a probability p (where 0 < p < 1), which is the same for all of them. Find the value of p, for which the following
events have the same probability:

1. A randomly chosen bulb from the first box works.

2. Two randomly chosen bulbs from the second box both work.

Result. 7/20

Solution. Let us do straightforward combinatorics: The probability of the first event is

P1 =
1

14
(5 + 9p),

while for the second event we obtain

P2 =
1(
14
2

) ((9
2

)
+ 9 · 5p+

(
5

2

)
p2
)
.

Now our goal is to solve P1 = P2, which is a quadratic equation solvable via the usual approaches. However, we may
realize that p = 1 is surely a solution, hence we may easily find the other one using Vièta’s formulas: Recall that a
quadratic equation a · (x− r1) · (x− r2) = 0 has the constant term a · r1 · r2, where r1, r2 are the roots and a is the
coefficient of the quadratic term x2. Therefore the solution can be found as

(92)
(142 )

− 5
14

(52)
(142 )

=
7

20
.
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Problem 42. Determine the volume of the body shown below, formed by three identically trimmed cylindrical tubes.
The axes of the cylinders meet at the vertices of an equilateral triangle. The side lengths of the inmost and outmost
contours (also equilateral triangles) are given.

16

10

Result. 117π
4

Solution. Let us look at the plane containing the inmost and outmost contours and draw the segment XZ perpendicular
to Y Z as in the picture.

10
30◦

3

X

ZY

The symmetry of the involved equilateral triangles gives |Y Z| = 3 and |∢ZY X| = 30◦, and thus |XZ| =
√
3. Cutting

the full body along the planes indicated in the picture above by dotted and dashed lines splits it into three cylinders of

radius |XZ|
2 =

√
3
2 and height 10 and six pieces, which can be rearranged to form three cylinders of the same radius and

height 3. The sought volume is thus

V = π

(√
3

2

)2

(3 · 10 + 3 · 3) = 117π

4
.

Problem 43. Ten pairwise distinct positive integers are written in a row so that

• the sum of any two consecutive numbers is divisible by 3,

• the sum of any three consecutive numbers is divisible by 2.

What is the smallest possible sum of the ten numbers?

Result. 78

Solution. The optimal construction is 2, 1, 5, 4, 11, 7, 8, 13, 17, 10 with the sum of 78.
If there is a number divisible by 3, then also its neighbours are divisible by 3, etc., so all numbers are divisible by

three. Therefore, the minimum possible sum is 3 · (1 + 2 + · · ·+ 10) = 3 · 10·11
2 = 165 > 78, and it cannot be optimal.

Now, since the sum of three consecutive numbers should be divisible by 2, we have 2 options for each triplet: either
there are three even numbers or there are two odd and one even number. Consider that there is a triplet xi, xi+1, xi+2

with three even numbers. Then the triplet xi−1, xi, xi+1 cannot contain two odd numbers hence, xi−1 is also even.
Therefore, all ten numbers are even. The minimum possible sum is 2 · 10·11

2 = 110 > 78, thus it cannot be optimal.
Therefore, in each triplet, there are two odd (O) numbers, and the third one is even (E). There are three possible

configurations:

17



• OEOOEOOEOO – Summing 7 smallest odd and 3 smallest even numbers that are not divisible by 3 leads to the
minimum possible sum is 1 + 5 + 7 + 11 + 13 + 17 + 19 + 2 + 4 + 8 = 87 > 78, thus it cannot be optimal.

• OOEOOEOOEO – This configuration is symmetrical to the previous one.

• EOOEOOEOOE – Summing 6 smallest odd and 4 smallest even numbers that are not divisible by 3, leads to the
minimum possible sum is 1 + 5 + 7 + 11 + 13 + 17 + 2 + 4 + 8 + 10 = 78, which is the desired result.

Problem 44. Sophia is playing around with fractions. She wants to determine positive integers a, b fulfilling

2020

2024
<

a2

b
<

999

1000

such that a+ b is minimal. Do the same as Sophia and give this minimal sum a+ b as the result.

Result. 553

Solution. The given inequality is equivalent to

1000

999
<

b

a2
<

2024

2020
.

Therefore, Sophia has to choose a as the smallest positive integer for which there is a positive integer b satisfying

1000

999
· a2 < b <

2024

2020
· a2 ⇐⇒ a2 +

1

999
· a2 < b < a2 +

4

2020
· a2.

For a < 32, she gets a2 < a2 + a2

999 < a2 + 1. If there is an a < 32 such that 4a2

2020 > 1, she can take the minimal a
fulfilling this inequality. Now

4 · 222

2020
=

442

2020
=

1936

2020
< 1 and

4 · 232

2020
=

462

2020
=

2116

2020
> 1.

Therefore, a = 23 and b = a2+1 = 530 fulfill the problem statement hence, the value asked for is a+ b = 23+530 = 553.

Problem 45. The floor of a tent has the shape of a triangle with side lengths of 1.3, 2, and 2.1 meters. The
manufacturer wants to advertise that a person of height h can lie there arbitrarily in the sense that every point of the
floor belongs to a possible sleeping position (a segment of length at least h contained in the triangle). How much (in
meters) can h be at most?

Result. 126
65

Solution. We claim that the longest segment, which can be put inside an acute triangle (which ours clearly is) through
its arbitrary point, is the longest altitude. By drawing all segments from one vertex to the opposite side, we cover
the whole triangle, and the shortest segment we drew is the corresponding altitude (an acute triangle contains all its
altitudes). It remains to be shown that there is no satisfying segment that is longer. Take a view at the foot of the
longest altitude. If the corresponding side is shorter than the altitude, there cannot be a longer satisfying segment
(since all segments containing the foot are of a length at most the maximum of the length of the altitude and the length
of the corresponding side). The basic formula for the area of a triangle shows that the longest altitude belongs to the
shortest side, which in our case is 1.3. Hence, if the corresponding altitude is greater than 1.3, we are done.

There are many ways to compute the length of the corresponding altitude. One would be using Heron’s formula to
compute the area and then dividing by the half of the side. We show it in a more elementary way. We scale all values
by 10 (i.e., compute in decimeters instead of meters). Denote by x, 13− x the lengths at which the considered altitude
intersects the side of length 13. Then, from Pythagoras’ theorem, we have

202 − x2 = 212 − (13− x)2,

26x = 128,

x =
64

13
.

Hence, the altitude equals

h =

√
202 −

(
64

13

)2

=
4

13

√
25 · 169− 256

=
4

13

√
9 · 9 · 49

=
252

13
.
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Since 252
13 > 13, the altitude is longer than the side, as desired. The result in meters is thus 252

130 = 126
65 .

Problem 46. Find the largest positive integer q such that for any positive integer n ≥ 55, the number q divides the
product

n(n+ 4)(n− 23)(n− 54)(n+ 63).

Result. 40

Solution. Denote the product as A. Taking A modulo 5, we see that the factors are n, n+ 4, n+ 2, n+ 1, and n+ 3,
respectively. Since they are distinct, at least one of them is 0 (mod 5), that is 5 | A. If n is even, then there are
three even factors in A, so 8 | A. If n is odd, there are two even factors, n − 23 and n+ 63, whose difference is 86.
Furthermore, 86 ≡ 2 (mod 4), so exactly one factor is a multiple of 4, meaning 8 | A. Together, this shows 40 | A.

Taking n = 59, one gets that the largest powers of 2 and 5 dividing A are 8 and 5, respectively. Taking n = 55, we
get 3 ∤ A. Finally, for any prime p > 5, the factors of A occupy at most 5 < p residue classes mod p, so it is always
possible to choose n such that p ∤ A.

Therefore the result is q = 40.

Problem 47. Adam, Bea, Charles, Daniel, and Erik are attending two courses. Adam and Bea attend only the first
course, Charles and Erik attend only the other one, while Daniel attends both. Roberta knows that each course is
attended by three students, but not by which three. So she asks everyone to point a finger randomly at a classmate
from any of their courses (i.e., Daniel will choose each of the other four people with probability 1

4 , etc.). What is the
probability that it will be possible for Roberta to figure out that Daniel is the one attending both courses?

Result. 3
4

Solution. If one student is pointing a finger at the other student, we will say that there is a connection between them.
Roberta is able to identify Daniel if and only if at least one person from each course has a connection with Daniel. If

Daniel has more than two connections, it is obvious, since no other person can have such many connections. Otherwise,
Daniel has exactly one connection in each of the two courses.

Without loss of generality, assume that there are connections between Adam – Daniel and Charles – Daniel. Since
Bea has no connection with Daniel, she is necessarily pointing at Adam. Analogously, Erik is pointing at Charles.
Therefore, we have a path of connections Bea – Adam – Daniel – Charles – Erik, and since only possible connection
paths of length 4 with all 5 students have Daniel in the middle, we are done.

On the other hand, if there is no connection of Daniel with one course, we can assume he is attending only the
other course (since we do not have information about connection with the first one) and therefore indistinguishable
from his classmates in that course.

Now we can compute the resulting probability.

1. Suppose that Adam and Bea are pointing at each other, while Charles and Erik are not pointing at each other.
The probability of the first event is 1

2 · 1
2 = 1

4 . In the second event at least one from Charles and Erik must be
pointing at Daniel hence, the probability

(
1− 1

4

)
, and finally, Daniel must be pointing at one from Adam and

Bea
(
2
4

)
. An analogous situation is when Charles and Erik are pointing at each other and Adam and Bea are not.

2. Otherwise, at least one from Adam and Bea is pointing at Daniel
(
1− 1

4

)
; the same goes for Charles and Erik(

1− 1
4

)
and it is irrelevant where Daniel is pointing.

Summing up together, we get

1

4
·
(
1− 1

4

)
· 2
4
+

1

4
·
(
1− 1

4

)
· 2
4
+

(
1− 1

4

)
·
(
1− 1

4

)
=

3

32
+

3

32
+

9

16
=

3

4
.

Problem 48. Function f : R≥0 → R≥0 satisfies

1. f(x) = x2 for all 0 ≤ x < 1 and

2. f(x+ 1) = f(x) + x+ 1 for all non-negative real x.

Find all values of x such that f(x) = 482.

Result. 15 + 11 ·
√
2 = 15 +

√
242
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Solution. Let {x} denote the fractional part of x. Assuming ⌊x⌋ ≥ 1, we compute using the given conditions that

f(x) = f(⌊x⌋+ {x})
= ⌊x⌋+ {x}+ f(⌊x⌋ − 1 + {x}) = · · ·

=

⌊x⌋∑
i=1

i+ ⌊x⌋ · {x}+ f({x})

=
⌊x⌋ · (⌊x⌋+ 1)

2
+ ⌊x⌋ · {x}+ {x}2.

Note that the obtained formula holds for ⌊x⌋ = 0 as well.
Now we show that f is strictly increasing. Let us fix any integer n ≥ 0. For x, y ∈ [n, n+ 1) such that x < y, it is

obvious from the definition that f(x) < f(y). On the other hand, for all x ∈ [n, n+ 1), the condition f(x) < f(n+ 1)
holds because

f(x) =
⌊x⌋ · (⌊x⌋+ 1)

2
+ ⌊x⌋ · {x}+ {x}2

<
⌊x⌋ · (⌊x⌋+ 1)

2
+ ⌊x⌋+ 1

=
(⌊x⌋+ 2) · (⌊x⌋+ 1)

2

=
(n+ 2) · (n+ 1)

2
= f(n+ 1).

Therefore, there is at most one solution x to the given equation f(x) = 482. The greatest integer n such that n2+n
2 ≤ 482

is 30 and hence ⌊x⌋ = 30. Now 482 = f(x) = ⌊x⌋·(⌊x⌋+1)
2 + ⌊x⌋ · {x}+ {x}2 = 15 · 31 + 30 · {x}+ {x}2 gives a quadratic

equation for {x} which has unique solution {x} = −15+
√
242 belonging to [0, 1). Hence x = 30−15+

√
242 = 15+11

√
2.

Problem 49. In the picture, there are two squares and a marked pair of equal angles. Determine the size of the
missing angle in degrees.

?

Result. 112.5

Solution. Let us draw the perpendicular projections of the vertex adjacent to the sought angle on the sides of the big
square and label all the points according to the picture.

P

A B

CD

P1

P2

P3

P4

X

Y
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It is easy to see that the four shaded triangles are congruent. Indeed, they are all right triangles with hypotenuse
identical to one side of the smaller square and one angle equal to α given by how much the two squares are rotated
with respect to each other. It follows that P4PP3D is a rectangle formed by another two copies of the shaded triangles
and hence the angle marked by two stripes in the statement then equals 2α. Triangles AXY and PP2C are right and
isosceles (again because of the congruency of the shaded triangles) and hence 2α = 45◦ and the sought angle can be
computed as

90◦ − α+ 45◦ = 112.5◦.

Problem 50. Ondra got bored of traditional operations like addition and multiplication. So he made up his own
operation, starification. This operation, denoted by a ⋆ b, is defined on real numbers and has the following properties:

1. (a+ b) ⋆ c = (a ⋆ c) + (b ⋆ c),

2. a ⋆ (b+ c) = (a ⋆ b) ⋆ c.

Given that 3 ⋆ 2 = 54, find the value of 5 ⋆ 4.

Result. 1620

Solution. The second property gives us 5 ⋆ 4 = (5 ⋆ 2) ⋆ 2. If we denote f(x) = x ⋆ 2, then the problem can be
reformulated as to find f(f(5)), knowing that f(3) = 54.

The first property of the star operation immediately gives f(a + b) = f(a) + f(b). So we have 54 = f(3) =
f(1) + f(2) = f(1) + f(1) + f(1), thus f(1) = 18. From this, by induction, we easily obtain f(n) = 18n for every
positive integer n. Therefore, f(5) = 18 · 5 and f(f(5)) = 182 · 5 = 1620.

To see that there is actually such an operation, using basic knowledge about exponential functions, we can check
that x ⋆ y = x(3

√
2)y is well-defined for all real numbers x, y and satisfies the given conditions.

Problem 51. Marek painted squares of a grid 10×11 black or white so that each square has at most one neighbouring
square (two squares are neighbouring if they share an edge) of the same colour. In how many ways could he do it?
Two such coloured grids that look the same only after a rotation are considered different.

Result. 464

Solution. If there is any domino 2× 1 of the same coloured squares, then the entire “double” row or “double” column
in which this domino lies must also be filled with dominoes in alternating colours. This ensures that all dominoes must
be of the same orientation. Recall that filling n× 1 squares with dominoes and squares can be done in f(n) possible
ways, where f(n) is the Fibonacci sequence where f(0) = 1 and f(1) = 1.

Since all dominoes must be of the same orientation and consequent rows or columns are copies of the first row
or column, to prevent double counting on the standard chessboard, there must be f(10) + f(11)− 1 possible fillings.
Furthermore, the colouring of any chessboard can be attained by choosing the colour of the upper left corner and
colour the chessboard in an alternating pattern.

Therefore, all possible ways are 2 · (144 + 89− 1) = 464.

Problem 52. Helena learned about moving averages. She took her favourite sequence, the Fibonacci sequence
{Fk}∞k=0, which satisfies Fn = Fn−1+Fn−2 with F0 = 0 and F1 = 1, and made a sequence {mk}2024k=6 of moving averages,

which satisfies mk = Fk+Fk−1+···+Fk−6

7 . How many terms of the sequence {mk}2024k=6 are integers?

Result. 252

Solution. Recall the fact that
∑k

i=0 Fi = Fk+2 − 1. This can be proven by induction: for the first step,
∑0

i=0 Fi =

F0 = 0 = 1− 1 = F2 − 1, and for the second step,
∑k+1

i=0 Fi = Fk+1 +
∑k

i=0 Fi = Fk+1 + Fk+2 − 1 = Fk+3 − 1. Hence

Fk + Fk−1 + · · ·+ Fk−6 =

k∑
i=0

Fi −
k−7∑
i=0

Fi = Fk+2 − Fk−5 = 7 ·mk.

Let dl be the remainder of Fl after division by 7. The terms of the sequence {dl}2024l=0 are

0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1, 0, 1, 1, . . . 0

and since dl ≡ dl−1 + dl−2 (mod 7), it is clear, that the sequence of remainders dl has a period of length 16. All indices
l such that dl+2 ≡ dl−5 (mod 7) are l ≡ 4, 12 (mod 16). Since 6 ≤ l ≤ 2024 and 2024 = 126 · 16 + 8, therefore there
are solutions in the form l = 16 · k+ 4 for 1 ≤ k ≤ 126 and also solutions in the form l = 16 · k+ 12 for 0 ≤ k ≤ 125. In
total, there are 2 · 126 = 252 solutions.
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Problem 53. Inside a circular sector with a central angle of 60◦, another circular sector is inscribed, and this is done
once more, as in the picture. Determine the ratio of the radii of the smallest and largest sectors.

60◦

Result.
√
39/8

Solution. Rotate the smallest sector, as shown in the following figure.

60◦

From which it is clear that we want to compute the y-coordinate of the intersection of the first and second arcs. Let
the centre of the first sector be at coordinates (0, 0) and the right-hand vertex at (1, 0). Then the largest circle is

described via x2 + y2 = 1 and the medium one via (x− 1)2 + y2 =
(√

3
2

)2
. By subtracting the first equation from the

second, we obtain 1− 2x = 3
4 − 1, and hence x = 5

8 . Then it can be easily concluded that y = ±
√
39
8 , and since the

negative solution does not yield a valid geometric configuration, the only solution is
√
39
8 .

Problem 54. There are 2024 hexagonal tiles in the bee hive. In the centre, there is 1ml of honey. In a spiral pattern,
as shown in the figure, there is an increasing volume of honey until the last tile has 2024ml of honey. Queen Bee
decides that she wants to build a highway from the centre tile directly outwards, as shown by the grey colour in the
figure. To do that, all the honey from the grey tiles needs to be removed. How much honey (in millilitres) needs to be
relocated to build this project?

22
21

20 9
8

19 2
7

18 1
6

17

23

10

3

4

24

11

12

13

25

26

27

28
5

14
29

16
15

30

Result. 17928

Solution. Denote H(n) the amount of honey in the n-th tile from the centre on the desired highway. Then H(1) = 2,
H(2) = 9 and so on. Take a look at the hexagon formed by tiles at a distance of exactly n from the centre. Walking
through any side of this hexagon, we need to do n steps. On the spiral from H(n) to H(n+ 1), we walk through five
sides of the hexagon at a distance of n from the centre and one side of the hexagon at a distance of n+ 1 from the
centre. Hence, it can be deduced that H(n+ 1) = H(n) + 5n+ (n+ 1) = H(n) + 6n+ 1. Then we can find the close
form of this sequence as

H(n) = 6(n− 1) + 1 +H(n− 1) = · · ·
= 6 · ((n− 1) + (n− 2) + · · ·+ 1) + (n− 1) +H(1)

= 6 · (n− 1)n

2
+ n+ 1

= 3n2 − 2n+ 1.
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To find the sum of all honey, we need to find the number N of hexagons (excluding the one in the centre) on the
highway. Since there are exactly 2024 hexagons, N is the greatest integer satisfying

H(N) ≤ 2024,

3N2 − 2N ≤ 2023,

N2 − 2

3
N ≤ 674 +

1

3
.

Since 272 − 2
3 · 27 > 729 − 27 > 675, the value of N can be at most 26 and indeed 262 − 2

3 · 26 < 676 − 18 < 674,
therefore N = 26 is the sought-after number of highway hexagons.

Now it remains to calculate the sum

1 +

N∑
k=1

H(k) = 1 + 3

N∑
k=1

k2 − 2

N∑
k=1

k +

N∑
k=1

1

= 1 +
1

2
N(N + 1)(2N + 1)−N(N + 1) +N

= 1 + 13 · 27 · 53− 26 · 27 + 26

= 17928.

Another way to calculate the final sum is by realising that

H(k) = 6 · (k − 1)k

2
+ k + 1 = 6

(
k

2

)
+

(
k + 1

1

)
and that recall following identity from Pascal’s triangle (known as Hockey-stick identity)(

m

m

)
+

(
m+ 1

m

)
+ · · ·+

(
n

m

)
=

(
n+ 1

m+ 1

)
.

Then,

1 +

N∑
k=1

H(k) = 1 + 6

N∑
k=1

(
k

2

)
+

N∑
k=1

(
k + 1

1

)
= 1 + 6

(
N + 1

3

)
+

((
N + 2

2

)
− 1

)
= 27 · 26 · 25 + 14 · 27
= 17928.

Problem 55. How many distinct integers occur in the list⌊
12

2024

⌋
,

⌊
22

2024

⌋
, . . . ,

⌊
20242

2024

⌋
,

where ⌊x⌋ denotes the greatest integer less than or equal to x?

Result. 1519

Solution. Since (n + 1)2 − n2 = 2n + 1, for n ≤ 1011 it holds that (n+1)2

2024 − n2

2024 = 2n+1
2024 ≤ 2023

2024 < 1 and so⌊
(n+1)2

2024

⌋
≤
⌊

n2

2024

⌋
+ 1. From that we know the list

⌊
12

2024

⌋
,
⌊

22

2024

⌋
, . . . ,

⌊
10122

2024

⌋
contains all integers from

⌊
12

2024

⌋
= 0

to
⌊
10122

2024

⌋
= 506, so in the first 1012 terms of sequence, there are 507 distinct elements.

On the other hand, for n ≥ 1012 it holds that (n+1)2

2024 − n2

2024 = 2n+1
2024 ≥ 2025

2024 > 1 and so
⌊
(n+1)2

2024

⌋
>
⌊

n2

2024

⌋
.

Thus, every element from
⌊
10132

2024

⌋
,
⌊
10142

2024

⌋
, . . . ,

⌊
20242

2024

⌋
is new in the list (since it is strictly greater than the previous

element), so in the last 1012 terms of sequence, all 1012 of them are distinct (and they are also distinct from the
elements in the first half of the sequence).

In total, the sequence contains 507 + 1012 = 1519 distinct elements.
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Problem 56. How many ordered 4-tuples (a, b, c, d) of pairwise distinct numbers a, b, c, d ∈ {1, 2, . . . , 17} are there
such that a− b+ c− d is divisible by 17?

Result. 3808

Solution. Construct a regular 17-gon P1 . . . P17. It follows from a − b ≡ d − c (mod 17) that Pa, Pb, Pc, Pd form
an isosceles trapezium with parallel bases PaPc and PbPd. After removing one vertex, the remaining 16 vertices can
be paired into 8 parallel lines and any two of them can be used as the trapezium (and the corresponding considered
subsets {a, b, c, d}). There are 17 ·

(
8
2

)
= 476 such subsets and each of them defines several ordered 4-tuples: we need to

choose which base is PaPc and which is PbPd and then we can swap a with c and b with d, which gives 2 · 2 · 2 = 8
options. Therefore, the result is 8 · 476 = 3808.

Problem 57. Let ABCD be a rectangle and a point E on side CD, such that 2DE = EC. Let F be an intersection
of segments BD and AE. Given that ∠DFA = 45◦, determine the ratio AD

AB .

Result.
√
7−2
3

Solution. The configuration is scale invariant, hence we can assume that AD = 4. Denote further the perpendicular
projection of F on AD by G, the circumcenter of triangle ADF by O and the perpendicular projection of O on GF by H.
Triangles ABF and EDF are similar with ratio AB : ED = 3 : 1, hence AG = 3. We have ∠DOA = 2 · ∠DFA = 90◦

and hence AOD is right isosceles triangle. The distance of O from both AB and AD therefore equals 2. Denoting the
last unknown sidelength in right triangle HOF by x = HF and using Pythagoras’ theorem gives

x2 + (3− 2)2 = (2
√
2)2 = 8 ⇒ x =

√
7.

Since triangles DGF and DAB are similar, the sought ratio equals

DA

AB
=

DG

GF
=

1

2 +
√
7
=

√
7− 2

3
.

A B

CD E

F

O

x
︸ ︷︷ ︸

︸
︷︷

︸
4 90◦

︸
︷︷

︸

3

G
H

. . .

. . .

. . .

Problem 58. Let P (x) be a polynomial of degree 10 with integer coefficients such that it has only real roots and

P (x) divides the polynomial P (P (x) + 2x− 4). Find the value of P (2024)
P (206) .

Note: Here we say that a polynomial P (x) divides a polynomial Q(x) if P (x) and Q(x) have integer coefficients and
there exists a polynomial R(x) with integer coefficients such that Q(x) = R(x) · P (x).

Result. 1010 = 10000000000

Solution. If r is a root of P (x) then all the numbers

2r − 4, 2(2r − 4)− 4 = 4r − 12, 2(4r − 12)− 4 = 8r − 28, . . . , 2nr − 2n+2 + 4, n ∈ N,

are also roots of P (x). Since P (x) has at most 10 real roots, there are j > i such that 2ir − 2i+2 + 4 = 2jr − 2j+2 + 4.
This implies 2i · (r − 4) = 2j · (r − 4), hence r = 4. Thus 4 is the only root and we have P (x) = a · (x− 4)10, where

a ̸= 0 is a real constant. Hence P (2024)
P (206) =

(
2020
202

)10
= 1010 = 10000000000.
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Problem 59. Joe is standing in the circle of 2024 people labeled clockwise by numbers 1, 2, . . . , 2024. They are
playing with a frisbee. Person in place 1 throws it to the person in place 3, then they throw it to the person in place 5,
and so on. Each person throws the disc to the person next to the one left of them (so they skip one person). The
skipped person is now angry that they have not played and leave the circle. This process repeats until the last two
people are playing. If Joe wants to be one of those two people in the end, where should he stand in the beginning?
Find the sum of numbers of these positions.

Result. 2978

Solution. If the last two people played, then the one holding the disc would toss it to themselves and be the remaining
one in the circle. To find the position of this last person, consider following. If there are 2n persons in the circle, then
everyone in the even position will leave after the disc makes one complete round, and we will get a similar situation
with 2n−1 people. Additionally, the person in position 1 is holding the disc again. Hence, by induction, this one person
will be the last. Now if there are 2n + k persons in the circle, then after k tosses, the person holding the disc is in a
similar situation with 2n remaining persons. His position was 2k + 1. Among 2024 = 1024 + 1000 people, it will be
position 2001. For the second to last one, consider the number of people standing in the circle to be 2n + 2n+1, and we
claim that the second to last is in position 1. This can be verified for small n: so that the second-to-last remaining
person in the circle of 3, 6, or 12 people is person 1. Again, by induction, if there were 2n+1 + 2n+2 people in the circle,
then after one circle of tossing, there would remain 2n + 2n+1 people, with number 1 holding the disc again. Now for
the number of people equal to 2n + 2n+1 + k we can deduce that after k tosses, we are in a familiar situation; therefore,
the position of the second-to-last person is 2k+1 as well. Since 2024 = 1024+ 512+ 488, we get that the second-to-last
position is 977. Hence, the answer is 2001 + 977 = 2978.

Problem 60. Ondra is throwing frisbee with his three friends. They obey this rule: You cannot pass the disc back to
the person who passed the disk to you in the previous turn. Ondra started the game and after ten turns, the disk was
held again by Ondra. In how many ways could the ten passes be completed?

Result. 414

Solution. Compute all the possible passing sequences, regardless of Ondra being last. At first, Ondra can pass the
disc to three people. Every other friend can only pass the disc to two people because of the rule. If there are n turns, it
means there are 3 · 2n−1 sequences.

Denote the number of sequences that end with Ondra in the n-th turn as yn. On n-th turn, there are 3 · 2n−1

sequences in total. In the next turn, some of those sequences can be prolonged to Ondra. Those that cannot be prolonged
to Ondra are the ones with Ondra being the one holding disc at n-th turn or n− 1-th turn because he has to pass disc
to someone else. There are yn and 2yn−1 of such sequences, respectively; therefore, yn+1 = 3 · 2n−1 − yn − 2yn−1.

It is more straightforward to calculate each term until y10 then search for an explicit formula. From y1 = 0 and
y2 = 0, and recurrence relation yn+1 = 3 · 2n−1 − yn − 2yn−1 it can be calculated that y3 = 3 · 21 − 0 − 0 = 6,
y4 = 3 ·22−6 = 6, y5 = 3 ·23−6−12 = 6, y6 = 3 ·24−6−12 = 30, y7 = 3 ·25−30−12 = 54, y8 = 3 ·26−54−60 = 78,
y9 = 3 · 27 − 78− 108 = 198, and y10 = 3 · 28 − 198− 156 = 414.

Alternative solution: Consider a sequence of n passes with Ondra at the beginning, at the end, and nowhere in
between. If this sequence happens to be at the beginning of the game, then Ondra can pass to 3 friends, and then it
can continue in only 2 ways, after which tosses are deterministic. If such a sequence happens to be in the middle of the
game, then one of the friends passes the disc to Ondra; hence, he can choose only from two friends, and then there
are only two options left. Such a sequence of n passes cannot be shorter than 3 therefore, it is sufficient to find all
partitions of 10 without parts less than 3. There are only the following partitions of 10: 10, 3 + 7, 7 + 3, 6 + 4, 4 + 6,
5+5, 3+3+4, 3+4+3, and 4+3+3. The partition of 10 has 6 possible ways to be played out. Each of the partitions
that has two parts can be played out in 6 · 4 ways; therefore, there are 5 · 6 · 4 ways. Finally, there are 6 · 4 · 4 ways how
partition with three parts can be played out, hence 3 · 6 · 4 · 4 ways. Together 6 · (1 + 5 · 4 + 3 · 4 · 4) = 6 · 69 = 414 ways.

Problem 61. A point D on side AB of triangle ABC is such that ∠ACD = 11.3◦ and ∠DCB = 33.9◦. Furthermore,
∠CBA = 97.4◦. Find ∠AED, where E is a point on AC such that EC = BC.

Result. 41.3◦

Solution. Put α = 11.3◦ and β = 97.4◦ for brevity; then ∠DCB = 3α. Further, let F be a point on line AB distinct
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from B such that CB = CF .

α 3α

β
A

D

E

B
F

C

60◦

60◦
30◦

Let us compute ∠BCF : we have ∠FBC = 180◦−β and △BCF is isosceles, hence ∠BCF = 180◦−2∠FBC = 2β−180◦.
Now we note that

∠ECF = α+ 3α+ 2β − 180◦ = 4 · 11.3◦ + 2 · 97.4◦ − 180◦ = 60◦.

Since CF = CB, which equals CE according to the problem statement, △CEF is equilateral.
We further show that FC = FD: As ∠DCF = 60◦ − α and ∠CFD = 180◦ − β, we have

∠FDC = 180◦ − (60◦ − α)− (180◦ − β) = α+ β − 60◦ = 48.7◦ = 60◦ − α = ∠DCF,

therefore △CDF is isosceles with apex F and FC = FD as desired. Together with △CEF being equilateral this
implies FC = FE = FD; in other words, points C, E, D lie on a circle with center F . Hence ∠CDE = 1

2∠CFE = 30◦

and ∠DEC = 180◦ − α− 30◦. Finally,

∠AED = 180◦ − ∠DEC = 30◦ + α = 41.3◦.

Problem 62. The real numbers a > b > 1 satisfy the inequality

(ab+ 1)2 + (a+ b)2 ≤ 2(a+ b)(a2 − ab+ b2 + 1).

Determine the minimum possible value of √
a− b

b− 1
.

Result. 1√
2
=

√
2
2

Solution. We rearrange the inequality as follows:

(ab+ 1)2 + (a+ b)2 ≤ 2(a+ b)(a2 − ab+ b2 + 1),

0 ≤ 2a3 + 2b3 − a2b2 − a2 − b2 − 4ab+ 2a+ 2b− 1,

0 ≤ (a2 − 2b+ 1)(2a− b2 − 1).

Since a > b > 1, then also a2 > b2, and we have a2 − 2b+ 1 > b2 − 2b+ 1 = (b− 1)2 > 0. Therefore, for the second
bracket, we have

2a− b2 − 1 ≥ 0,

2a− 2b ≥ b2 − 2b+ 1,

2(a− b) ≥ (b− 1)2,
√
a− b

b− 1
≥ 1√

2
.

The value 1/
√
2 is obtained e.g. when a = 5/2 and b = 2 (if we want to get equality, a = (b2 + 1)/2 has to hold), so it

really is the minimal value of
√
a− b/(b− 1).
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Problem 63. Let x, y, z be distinct non-zero integers such that

(x− 1)
2

z
+

(y − 1)
2

x
+

(z − 1)
2

y
=

(x− 1)
2

y
+

(y − 1)
2

z
+

(z − 1)
2

x
.

Find the minimum possible value of |64x+ 19y + 4z|.
Result. 7

Solution. Let the symbol
∑

cyc Q(x, y, z) indicate a sum where the other two terms are obtained by repeating twice
the cyclic swap x → y → z → x hence,

∑
cyc Q(x, y, z) = Q(x, y, z) +Q(y, z, x) +Q(z, x, y).

Multiplying the equation by xyz ̸= 0 and rearranging yields

P (x, y, z) = x(x− 1)2(y − z) + y(y − 1)2(z − x) + z(z − 1)2(x− y) =
∑
cyc

x(x− 1)2(y − z) = 0.

Since P vanishes for x = y, y = z, or z = x, it must be divisible by (x − y)(y − z)(z − x) =
∑

cyc x
2(z − y). Since

P (x, y, z) is a polynomial of degree 4 and
∑

cyc x
2(z − y) is a polynomial of degree 3, the reminding factor must be

linear

P (x, y, z) =

(∑
cyc

x2(z − y)

)
· (ax+ by + cz + d) .

Furthermore xy − xz + yz − yx+ zx− zy =
∑

cyc x(y − z) = 0, hence

P (x, y, z) =
∑
cyc

(
x3(y − z)− 2x2(y − z) + x(y − z)

)
=
∑
cyc

(
x3(y − z)− 2x2(y − z)

)
+ 0

=

(∑
cyc

x2(z − y)

)
· (ax+ by + cz + d) .

From this we can see that a must be −1 so that x2(z − y) · ax = x3(y − z) and similarly b = c = −1. Further, from
x2(z − y) · d = −2x2(y − z), we obtain that d = 2. Therefore,

P (x, y, z) = (x− y)(y − z)(z − x)(2− x− y − z) = 0.

As we only look for pairwise distinct triples (x, y, z), it must follow that x+ y + z = 2. It is easy to see that any
triple with these properties solves the original equation as well.

To find the minimal value of the expression |64x+ 19y + 4z|, subtract 4(x+ y + z)− 8 = 0 to get

|64x+ 19y + 4z| = |15 · (4x+ y) + 8|.

We are searching for an integer 4x+ y that minimises the expression. The minimum is clearly attained for 4x+ y = −1,
for instance, at (x, y, z) = (−2, 7,−3). Therefore, the result is 7.
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